umeyama.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Hauke Heibel <hauke.heibel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include "main.h"
11 
12 #include <Eigen/Core>
13 #include <Eigen/Geometry>
14 
15 #include <Eigen/LU> // required for MatrixBase::determinant
16 #include <Eigen/SVD> // required for SVD
17 
18 using namespace Eigen;
19 
20 // Constructs a random matrix from the unitary group U(size).
21 template <typename T>
23 {
24  typedef T Scalar;
26 
27  MatrixType Q;
28 
29  int max_tries = 40;
30  bool is_unitary = false;
31 
32  while (!is_unitary && max_tries > 0)
33  {
34  // initialize random matrix
35  Q = MatrixType::Random(size, size);
36 
37  // orthogonalize columns using the Gram-Schmidt algorithm
38  for (int col = 0; col < size; ++col)
39  {
40  typename MatrixType::ColXpr colVec = Q.col(col);
41  for (int prevCol = 0; prevCol < col; ++prevCol)
42  {
43  typename MatrixType::ColXpr prevColVec = Q.col(prevCol);
44  colVec -= colVec.dot(prevColVec)*prevColVec;
45  }
46  Q.col(col) = colVec.normalized();
47  }
48 
49  // this additional orthogonalization is not necessary in theory but should enhance
50  // the numerical orthogonality of the matrix
51  for (int row = 0; row < size; ++row)
52  {
53  typename MatrixType::RowXpr rowVec = Q.row(row);
54  for (int prevRow = 0; prevRow < row; ++prevRow)
55  {
56  typename MatrixType::RowXpr prevRowVec = Q.row(prevRow);
57  rowVec -= rowVec.dot(prevRowVec)*prevRowVec;
58  }
59  Q.row(row) = rowVec.normalized();
60  }
61 
62  // final check
63  is_unitary = Q.isUnitary();
64  --max_tries;
65  }
66 
67  if (max_tries == 0)
68  eigen_assert(false && "randMatrixUnitary: Could not construct unitary matrix!");
69 
70  return Q;
71 }
72 
73 // Constructs a random matrix from the special unitary group SU(size).
74 template <typename T>
76 {
77  typedef T Scalar;
78 
80 
81  // initialize unitary matrix
82  MatrixType Q = randMatrixUnitary<Scalar>(size);
83 
84  // tweak the first column to make the determinant be 1
85  Q.col(0) *= numext::conj(Q.determinant());
86 
87  return Q;
88 }
89 
90 template <typename MatrixType>
91 void run_test(int dim, int num_elements)
92 {
93  using std::abs;
97 
98  // MUST be positive because in any other case det(cR_t) may become negative for
99  // odd dimensions!
100  const Scalar c = abs(internal::random<Scalar>());
101 
102  MatrixX R = randMatrixSpecialUnitary<Scalar>(dim);
103  VectorX t = Scalar(50)*VectorX::Random(dim,1);
104 
105  MatrixX cR_t = MatrixX::Identity(dim+1,dim+1);
106  cR_t.block(0,0,dim,dim) = c*R;
107  cR_t.block(0,dim,dim,1) = t;
108 
109  MatrixX src = MatrixX::Random(dim+1, num_elements);
110  src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
111 
112  MatrixX dst = cR_t*src;
113 
114  MatrixX cR_t_umeyama = umeyama(src.block(0,0,dim,num_elements), dst.block(0,0,dim,num_elements));
115 
116  const Scalar error = ( cR_t_umeyama*src - dst ).norm() / dst.norm();
118 }
119 
120 template<typename Scalar, int Dimension>
121 void run_fixed_size_test(int num_elements)
122 {
123  using std::abs;
124  typedef Matrix<Scalar, Dimension+1, Dynamic> MatrixX;
126  typedef Matrix<Scalar, Dimension, Dimension> FixedMatrix;
127  typedef Matrix<Scalar, Dimension, 1> FixedVector;
128 
129  const int dim = Dimension;
130 
131  // MUST be positive because in any other case det(cR_t) may become negative for
132  // odd dimensions!
133  // Also if c is to small compared to t.norm(), problem is ill-posed (cf. Bug 744)
134  const Scalar c = internal::random<Scalar>(0.5, 2.0);
135 
136  FixedMatrix R = randMatrixSpecialUnitary<Scalar>(dim);
137  FixedVector t = Scalar(32)*FixedVector::Random(dim,1);
138 
139  HomMatrix cR_t = HomMatrix::Identity(dim+1,dim+1);
140  cR_t.block(0,0,dim,dim) = c*R;
141  cR_t.block(0,dim,dim,1) = t;
142 
143  MatrixX src = MatrixX::Random(dim+1, num_elements);
144  src.row(dim) = Matrix<Scalar, 1, Dynamic>::Constant(num_elements, Scalar(1));
145 
146  MatrixX dst = cR_t*src;
147 
148  Block<MatrixX, Dimension, Dynamic> src_block(src,0,0,dim,num_elements);
149  Block<MatrixX, Dimension, Dynamic> dst_block(dst,0,0,dim,num_elements);
150 
151  HomMatrix cR_t_umeyama = umeyama(src_block, dst_block);
152 
153  const Scalar error = ( cR_t_umeyama*src - dst ).squaredNorm();
154 
156 }
157 
159 {
160  for (int i=0; i<g_repeat; ++i)
161  {
162  const int num_elements = internal::random<int>(40,500);
163 
164  // works also for dimensions bigger than 3...
165  for (int dim=2; dim<8; ++dim)
166  {
167  CALL_SUBTEST_1(run_test<MatrixXd>(dim, num_elements));
168  CALL_SUBTEST_2(run_test<MatrixXf>(dim, num_elements));
169  }
170 
171  CALL_SUBTEST_3((run_fixed_size_test<float, 2>(num_elements)));
172  CALL_SUBTEST_4((run_fixed_size_test<float, 3>(num_elements)));
173  CALL_SUBTEST_5((run_fixed_size_test<float, 4>(num_elements)));
174 
175  CALL_SUBTEST_6((run_fixed_size_test<double, 2>(num_elements)));
176  CALL_SUBTEST_7((run_fixed_size_test<double, 3>(num_elements)));
177  CALL_SUBTEST_8((run_fixed_size_test<double, 4>(num_elements)));
178  }
179 
180  // Those two calls don't compile and result in meaningful error messages!
181  // umeyama(MatrixXcf(),MatrixXcf());
182  // umeyama(MatrixXcd(),MatrixXcd());
183 }
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
RowXpr
Block< Derived, 1, internal::traits< Derived >::ColsAtCompileTime, IsRowMajor > RowXpr
Definition: BlockMethods.h:17
col
m col(1)
Eigen::Block
Expression of a fixed-size or dynamic-size block.
Definition: Block.h:103
MatrixType
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
run_test
void run_test(int dim, int num_elements)
Definition: umeyama.cpp:91
c
Scalar Scalar * c
Definition: benchVecAdd.cpp:17
eigen_assert
#define eigen_assert(x)
Definition: Macros.h:1037
Q
Quaternion Q
Definition: testQuaternion.cpp:27
size
Scalar Scalar int size
Definition: benchVecAdd.cpp:17
CALL_SUBTEST_4
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22
epsilon
static double epsilon
Definition: testRot3.cpp:37
CALL_SUBTEST_3
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
CALL_SUBTEST_1
#define CALL_SUBTEST_1(FUNC)
Definition: split_test_helper.h:4
randMatrixSpecialUnitary
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > randMatrixSpecialUnitary(int size)
Definition: umeyama.cpp:75
run_fixed_size_test
void run_fixed_size_test(int num_elements)
Definition: umeyama.cpp:121
CALL_SUBTEST_5
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
Eigen::g_repeat
static int g_repeat
Definition: main.h:169
Eigen::Triplet< double >
conj
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:104
CALL_SUBTEST_6
#define CALL_SUBTEST_6(FUNC)
Definition: split_test_helper.h:34
CALL_SUBTEST_2
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
ColXpr
Block< Derived, internal::traits< Derived >::RowsAtCompileTime, 1, !IsRowMajor > ColXpr
Definition: BlockMethods.h:14
Eigen::Quaternion
The quaternion class used to represent 3D orientations and rotations.
Definition: ForwardDeclarations.h:293
error
static double error
Definition: testRot3.cpp:37
main.h
randMatrixUnitary
Eigen::Matrix< T, Eigen::Dynamic, Eigen::Dynamic > randMatrixUnitary(int size)
Definition: umeyama.cpp:22
row
m row(1)
VectorX
Matrix< Scalar, Dynamic, 1 > VectorX
Definition: sparse_lu.cpp:41
Eigen::Matrix
The matrix class, also used for vectors and row-vectors.
Definition: 3rdparty/Eigen/Eigen/src/Core/Matrix.h:178
abs
#define abs(x)
Definition: datatypes.h:17
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(umeyama)
Definition: umeyama.cpp:158
CALL_SUBTEST_7
#define CALL_SUBTEST_7(FUNC)
Definition: split_test_helper.h:40
align_3::t
Point2 t(10, 10)
CALL_SUBTEST_8
#define CALL_SUBTEST_8(FUNC)
Definition: split_test_helper.h:46
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Eigen::umeyama
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
Definition: Umeyama.h:95
R
Rot2 R(Rot2::fromAngle(0.1))
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
VERIFY
#define VERIFY(a)
Definition: main.h:380


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:09:26