test_HybridFactorGraph.py
Go to the documentation of this file.
1 """
2 GTSAM Copyright 2010-2019, Georgia Tech Research Corporation,
3 Atlanta, Georgia 30332-0415
4 All Rights Reserved
5 
6 See LICENSE for the license information
7 
8 Unit tests for Hybrid Factor Graphs.
9 Author: Fan Jiang, Varun Agrawal, Frank Dellaert
10 """
11 # pylint: disable=invalid-name, no-name-in-module, no-member
12 
13 import unittest
14 
15 import numpy as np
16 from gtsam.symbol_shorthand import C, M, X, Z
17 from gtsam.utils.test_case import GtsamTestCase
18 
19 import gtsam
20 from gtsam import (DiscreteConditional, GaussianConditional,
21  HybridBayesNet, HybridGaussianConditional,
22  HybridGaussianFactor, HybridGaussianFactorGraph,
23  HybridValues, JacobianFactor, noiseModel)
24 
25 DEBUG_MARGINALS = False
26 
27 
29  """Unit tests for HybridGaussianFactorGraph."""
30 
31  def test_create(self):
32  """Test construction of hybrid factor graph."""
33  model = noiseModel.Unit.Create(3)
34 
35  jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
36  jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
37 
38  gmf = HybridGaussianFactor((C(0), 2), [(jf1, 0), (jf2, 0)])
39 
41  hfg.push_back(jf1)
42  hfg.push_back(jf2)
43  hfg.push_back(gmf)
44 
45  hbn = hfg.eliminateSequential()
46 
47  self.assertEqual(hbn.size(), 2)
48 
49  hybridCond = hbn.at(0).inner()
50  self.assertIsInstance(hybridCond, HybridGaussianConditional)
51  self.assertEqual(len(hybridCond.keys()), 2)
52 
53  discrete_conditional = hbn.at(hbn.size() - 1).inner()
54  self.assertIsInstance(discrete_conditional, DiscreteConditional)
55 
56  def test_optimize(self):
57  """Test construction of hybrid factor graph."""
58  model = noiseModel.Unit.Create(3)
59 
60  jf1 = JacobianFactor(X(0), np.eye(3), np.zeros((3, 1)), model)
61  jf2 = JacobianFactor(X(0), np.eye(3), np.ones((3, 1)), model)
62 
63  gmf = HybridGaussianFactor((C(0), 2), [(jf1, 0), (jf2, 0)])
64 
66  hfg.push_back(jf1)
67  hfg.push_back(jf2)
68  hfg.push_back(gmf)
69 
70  dtf = gtsam.DecisionTreeFactor([(C(0), 2)], "0 1")
71  hfg.push_back(dtf)
72 
73  hbn = hfg.eliminateSequential()
74 
75  hv = hbn.optimize()
76  self.assertEqual(hv.atDiscrete(C(0)), 1)
77 
78  @staticmethod
79  def tiny(num_measurements: int = 1,
80  prior_mean: float = 5.0,
81  prior_sigma: float = 0.5) -> HybridBayesNet:
82  """
83  Create a tiny two variable hybrid model which represents
84  the generative probability P(Z, x0, mode) = P(Z|x0, mode)P(x0)P(mode).
85  num_measurements: number of measurements in Z = {z0, z1...}
86  """
87  # Create hybrid Bayes net.
88  bayesNet = HybridBayesNet()
89 
90  # Create mode key: 0 is low-noise, 1 is high-noise.
91  mode = (M(0), 2)
92 
93  # Create hybrid Gaussian conditional Z(0) = X(0) + noise for each measurement.
94  I_1x1 = np.eye(1)
95  for i in range(num_measurements):
96  conditional0 = GaussianConditional.FromMeanAndStddev(Z(i),
97  I_1x1,
98  X(0), [0],
99  sigma=0.5)
100  conditional1 = GaussianConditional.FromMeanAndStddev(Z(i),
101  I_1x1,
102  X(0), [0],
103  sigma=3)
104  bayesNet.push_back(
105  HybridGaussianConditional(mode, [conditional0, conditional1]))
106 
107  # Create prior on X(0).
108  prior_on_x0 = GaussianConditional.FromMeanAndStddev(
109  X(0), [prior_mean], prior_sigma)
110  bayesNet.push_back(prior_on_x0)
111 
112  # Add prior on mode.
113  bayesNet.push_back(DiscreteConditional(mode, "4/6"))
114 
115  return bayesNet
116 
117  def test_evaluate(self):
118  """Test evaluate with two different prior noise models."""
119  # TODO(dellaert): really a HBN test
120  # Create a tiny Bayes net P(x0) P(m0) P(z0|x0)
121  bayesNet1 = self.tiny(prior_sigma=0.5, num_measurements=1)
122  bayesNet2 = self.tiny(prior_sigma=5.0, num_measurements=1)
123  # bn1: # 1/sqrt(2*pi*0.5^2)
124  # bn2: # 1/sqrt(2*pi*5.0^2)
125  expected_ratio = np.sqrt(2 * np.pi * 5.0**2) / np.sqrt(
126  2 * np.pi * 0.5**2)
127  mean0 = HybridValues()
128  mean0.insert(X(0), [5.0])
129  mean0.insert(Z(0), [5.0])
130  mean0.insert(M(0), 0)
131  self.assertAlmostEqual(bayesNet1.evaluate(mean0) /
132  bayesNet2.evaluate(mean0),
133  expected_ratio,
134  delta=1e-9)
135  mean1 = HybridValues()
136  mean1.insert(X(0), [5.0])
137  mean1.insert(Z(0), [5.0])
138  mean1.insert(M(0), 1)
139  self.assertAlmostEqual(bayesNet1.evaluate(mean1) /
140  bayesNet2.evaluate(mean1),
141  expected_ratio,
142  delta=1e-9)
143 
144  @staticmethod
145  def measurements(sample: HybridValues, indices) -> gtsam.VectorValues:
146  """Create measurements from a sample, grabbing Z(i) for indices."""
147  measurements = gtsam.VectorValues()
148  for i in indices:
149  measurements.insert(Z(i), sample.at(Z(i)))
150  return measurements
151 
152  @classmethod
154  target,
155  proposal_density: HybridBayesNet,
156  N=10000):
157  """Do importance sampling to estimate discrete marginal P(mode)."""
158  # Allocate space for marginals on mode.
159  marginals = np.zeros((2, ))
160 
161  # Do importance sampling.
162  for s in range(N):
163  proposed = proposal_density.sample() # sample from proposal
164  target_proposed = target(proposed) # evaluate target
165  weight = target_proposed / proposal_density.evaluate(proposed)
166  marginals[proposed.atDiscrete(M(0))] += weight
167 
168  # print marginals:
169  marginals /= marginals.sum()
170  return marginals
171 
172  def test_tiny(self):
173  """Test a tiny two variable hybrid model."""
174  # Create P(x0)P(mode)P(z0|x0,mode)
175  prior_sigma = 0.5
176  bayesNet = self.tiny(prior_sigma=prior_sigma)
177 
178  # Deterministic values exactly at the mean, for both x and Z:
179  values = HybridValues()
180  values.insert(X(0), [5.0])
181  values.insert(M(0), 0) # low-noise, standard deviation 0.5
182  measurements = gtsam.VectorValues()
183  measurements.insert(Z(0), [5.0])
184  values.insert(measurements)
185 
186  def unnormalized_posterior(x):
187  """Posterior is proportional to joint, centered at 5.0 as well."""
188  x.insert(measurements)
189  return bayesNet.evaluate(x)
190 
191  # Create proposal density on (x0, mode), making sure it has same mean:
192  posterior_information = 1 / (prior_sigma**2) + 1 / (0.5**2)
193  posterior_sigma = posterior_information**(-0.5)
194  proposal_density = self.tiny(num_measurements=0,
195  prior_mean=5.0,
196  prior_sigma=posterior_sigma)
197 
198  # Estimate marginals using importance sampling.
199  marginals = self.estimate_marginals(target=unnormalized_posterior,
200  proposal_density=proposal_density)
201  if DEBUG_MARGINALS:
202  print(f"True mode: {values.atDiscrete(M(0))}")
203  print(f"P(mode=0; Z) = {marginals[0]}")
204  print(f"P(mode=1; Z) = {marginals[1]}")
205 
206  # Check that the estimate is close to the true value.
207  self.assertAlmostEqual(marginals[0], 0.74, delta=0.01)
208  self.assertAlmostEqual(marginals[1], 0.26, delta=0.01)
209 
210  # Convert to factor graph with given measurements.
211  fg = bayesNet.toFactorGraph(measurements)
212  self.assertEqual(fg.size(), 3)
213 
214  # Check ratio between unnormalized posterior and factor graph is the same for all modes:
215  for mode in [1, 0]:
216  values.insert_or_assign(M(0), mode)
217  self.assertAlmostEqual(
218  bayesNet.evaluate(values) / np.exp(-fg.error(values)),
219  0.6366197723675815)
220  self.assertAlmostEqual(bayesNet.error(values), fg.error(values))
221 
222  # Test elimination.
223  posterior = fg.eliminateSequential()
224 
225  def true_posterior(x):
226  """Posterior from elimination."""
227  x.insert(measurements)
228  return posterior.evaluate(x)
229 
230  # Estimate marginals using importance sampling.
231  marginals = self.estimate_marginals(target=true_posterior,
232  proposal_density=proposal_density)
233  if DEBUG_MARGINALS:
234  print(f"True mode: {values.atDiscrete(M(0))}")
235  print(f"P(mode=0; z0) = {marginals[0]}")
236  print(f"P(mode=1; z0) = {marginals[1]}")
237 
238  # Check that the estimate is close to the true value.
239  self.assertAlmostEqual(marginals[0], 0.74, delta=0.01)
240  self.assertAlmostEqual(marginals[1], 0.26, delta=0.01)
241 
242  @staticmethod
243  def calculate_ratio(bayesNet: HybridBayesNet,
244  fg: HybridGaussianFactorGraph, sample: HybridValues):
245  """Calculate ratio between Bayes net and factor graph."""
246  return bayesNet.evaluate(sample) / fg.probPrime(sample) if \
247  fg.probPrime(sample) > 0 else 0
248 
249  def test_ratio(self):
250  """
251  Given a tiny two variable hybrid model, with 2 measurements, test the
252  ratio of the bayes net model representing P(z,x,n)=P(z|x, n)P(x)P(n)
253  and the factor graph P(x, n | z)=P(x | n, z)P(n|z),
254  both of which represent the same posterior.
255  """
256  # Create generative model P(z, x, n)=P(z|x, n)P(x)P(n)
257  prior_sigma = 0.5
258  bayesNet = self.tiny(prior_sigma=prior_sigma, num_measurements=2)
259 
260  # Deterministic values exactly at the mean, for both x and Z:
261  values = HybridValues()
262  values.insert(X(0), [5.0])
263  values.insert(M(0), 0) # high-noise, standard deviation 3
264  measurements = gtsam.VectorValues()
265  measurements.insert(Z(0), [4.0])
266  measurements.insert(Z(1), [6.0])
267  values.insert(measurements)
268 
269  def unnormalized_posterior(x):
270  """Posterior is proportional to joint, centered at 5.0 as well."""
271  x.insert(measurements)
272  return bayesNet.evaluate(x)
273 
274  # Create proposal density on (x0, mode), making sure it has same mean:
275  posterior_information = 1 / (prior_sigma**2) + 2.0 / (3.0**2)
276  posterior_sigma = posterior_information**(-0.5)
277  proposal_density = self.tiny(num_measurements=0,
278  prior_mean=5.0,
279  prior_sigma=posterior_sigma)
280 
281  # Estimate marginals using importance sampling.
282  marginals = self.estimate_marginals(target=unnormalized_posterior,
283  proposal_density=proposal_density)
284  if DEBUG_MARGINALS:
285  print(f"True mode: {values.atDiscrete(M(0))}")
286  print(f"P(mode=0; Z) = {marginals[0]}")
287  print(f"P(mode=1; Z) = {marginals[1]}")
288 
289  # Check that the estimate is close to the true value.
290  self.assertAlmostEqual(marginals[0], 0.23, delta=0.01)
291  self.assertAlmostEqual(marginals[1], 0.77, delta=0.01)
292 
293  # Convert to factor graph using measurements.
294  fg = bayesNet.toFactorGraph(measurements)
295  self.assertEqual(fg.size(), 4)
296 
297  # Calculate ratio between Bayes net probability and the factor graph:
298  expected_ratio = self.calculate_ratio(bayesNet, fg, values)
299  # print(f"expected_ratio: {expected_ratio}\n")
300 
301  # Check with a number of other samples.
302  for i in range(10):
303  samples = bayesNet.sample()
304  samples.update(measurements)
305  ratio = self.calculate_ratio(bayesNet, fg, samples)
306  # print(f"Ratio: {ratio}\n")
307  if (ratio > 0):
308  self.assertAlmostEqual(ratio, expected_ratio)
309 
310  # Test elimination.
311  posterior = fg.eliminateSequential()
312 
313  # Calculate ratio between Bayes net probability and the factor graph:
314  expected_ratio = self.calculate_ratio(posterior, fg, values)
315  # print(f"expected_ratio: {expected_ratio}\n")
316 
317  # Check with a number of other samples.
318  for i in range(10):
319  samples = posterior.sample()
320  samples.insert(measurements)
321  ratio = self.calculate_ratio(posterior, fg, samples)
322  # print(f"Ratio: {ratio}\n")
323  if (ratio > 0):
324  self.assertAlmostEqual(ratio, expected_ratio)
325 
326 
327 if __name__ == "__main__":
328  unittest.main()
Eigen::internal::print
EIGEN_STRONG_INLINE Packet4f print(const Packet4f &a)
Definition: NEON/PacketMath.h:3115
gtsam::DecisionTreeFactor
Definition: DecisionTreeFactor.h:45
test_HybridFactorGraph.TestHybridGaussianFactorGraph.test_optimize
def test_optimize(self)
Definition: test_HybridFactorGraph.py:56
gtsam::HybridValues
Definition: HybridValues.h:37
gtsam::HybridBayesNet
Definition: HybridBayesNet.h:37
gtsam::JacobianFactor
Definition: JacobianFactor.h:91
gtsam::symbol_shorthand
Definition: inference/Symbol.h:147
X
#define X
Definition: icosphere.cpp:20
test_HybridFactorGraph.TestHybridGaussianFactorGraph.test_tiny
def test_tiny(self)
Definition: test_HybridFactorGraph.py:172
gtsam::range
Double_ range(const Point2_ &p, const Point2_ &q)
Definition: slam/expressions.h:30
gtsam::VectorValues
Definition: VectorValues.h:74
test_HybridFactorGraph.TestHybridGaussianFactorGraph.test_evaluate
def test_evaluate(self)
Definition: test_HybridFactorGraph.py:117
test_HybridFactorGraph.TestHybridGaussianFactorGraph.estimate_marginals
def estimate_marginals(cls, target, HybridBayesNet proposal_density, N=10000)
Definition: test_HybridFactorGraph.py:153
test_HybridFactorGraph.TestHybridGaussianFactorGraph
Definition: test_HybridFactorGraph.py:28
gtsam::HybridGaussianConditional
A conditional of gaussian conditionals indexed by discrete variables, as part of a Bayes Network....
Definition: HybridGaussianConditional.h:54
gtsam::HybridGaussianFactorGraph
Definition: HybridGaussianFactorGraph.h:106
gtsam::utils.test_case
Definition: test_case.py:1
test_HybridFactorGraph.TestHybridGaussianFactorGraph.test_create
def test_create(self)
Definition: test_HybridFactorGraph.py:31
test_HybridFactorGraph.TestHybridGaussianFactorGraph.measurements
gtsam.VectorValues measurements(HybridValues sample, indices)
Definition: test_HybridFactorGraph.py:145
test_HybridFactorGraph.TestHybridGaussianFactorGraph.tiny
HybridBayesNet tiny(int num_measurements=1, float prior_mean=5.0, float prior_sigma=0.5)
Definition: test_HybridFactorGraph.py:79
gtsam::DiscreteConditional
Definition: DiscreteConditional.h:37
C
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:50
gtsam::HybridGaussianFactor
Implementation of a discrete-conditioned hybrid factor. Implements a joint discrete-continuous factor...
Definition: HybridGaussianFactor.h:60
gtsam::utils.test_case.GtsamTestCase
Definition: test_case.py:16
len
size_t len(handle h)
Get the length of a Python object.
Definition: pytypes.h:2446
test_HybridFactorGraph.TestHybridGaussianFactorGraph.test_ratio
def test_ratio(self)
Definition: test_HybridFactorGraph.py:249
Z
#define Z
Definition: icosphere.cpp:21
test_HybridFactorGraph.TestHybridGaussianFactorGraph.calculate_ratio
def calculate_ratio(HybridBayesNet bayesNet, HybridGaussianFactorGraph fg, HybridValues sample)
Definition: test_HybridFactorGraph.py:243
M
Matrix< RealScalar, Dynamic, Dynamic > M
Definition: bench_gemm.cpp:51


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:06:54