Tests hybrid inference with a simple switching motion model. More...
#include <gtsam/base/Testable.h>
#include <gtsam/base/TestableAssertions.h>
#include <gtsam/discrete/DiscreteConditional.h>
#include <gtsam/discrete/DiscreteValues.h>
#include <gtsam/discrete/TableDistribution.h>
#include <gtsam/hybrid/HybridBayesNet.h>
#include <gtsam/hybrid/HybridGaussianConditional.h>
#include <gtsam/hybrid/HybridGaussianFactor.h>
#include <gtsam/hybrid/HybridGaussianFactorGraph.h>
#include <gtsam/hybrid/HybridValues.h>
#include <gtsam/inference/Symbol.h>
#include <gtsam/linear/GaussianFactorGraph.h>
#include <gtsam/linear/VectorValues.h>
#include <gtsam/nonlinear/PriorFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <CppUnitLite/TestHarness.h>
#include <memory>
Go to the source code of this file.
Namespaces | |
test_direct_factor_graph | |
Functions | |
void | addMeasurement (HybridBayesNet &hbn, Key z_key, Key x_key, double sigma) |
std::pair< double, double > | approximateDiscreteMarginal (const HybridBayesNet &hbn, const HybridGaussianConditional::shared_ptr &hybridMotionModel, const VectorValues &given, size_t N=100000) |
Approximate the discrete marginal P(m1) using importance sampling. More... | |
HybridBayesNet | CreateBayesNet (const HybridGaussianConditional::shared_ptr &hybridMotionModel, bool add_second_measurement=false) |
Create two state Bayes network with 1 or two measurement models. More... | |
static HybridGaussianFactorGraph | test_direct_factor_graph::CreateFactorGraph (const gtsam::Values &values, const std::vector< double > &means, const std::vector< double > &sigmas, DiscreteKey &m1, double measurement_noise=1e-3) |
Create a Factor Graph by directly specifying all the factors instead of creating conditionals first. This way we can directly provide the likelihoods and then perform linearization. More... | |
static HybridGaussianConditional::shared_ptr | CreateHybridMotionModel (double mu0, double mu1, double sigma0, double sigma1) |
Create hybrid motion model p(x1 | x0, m1) More... | |
DiscreteKey | m1 (M(1), 2) |
int | main () |
TEST (HybridGaussianFactorGraph, DifferentCovariances) | |
Test components with differing covariances but the same means. The factor graph is -X1--X2 | M1. More... | |
TEST (HybridGaussianFactorGraph, DifferentMeans) | |
Test components with differing means but the same covariances. The factor graph is -X1--X2 | M1. More... | |
TEST (HybridGaussianFactorGraph, TwoStateModel) | |
TEST (HybridGaussianFactorGraph, TwoStateModel2) | |
TEST (HybridGaussianFactorGraph, TwoStateModel3) | |
TEST (HybridGaussianFactorGraph, TwoStateModel4) | |
Tests hybrid inference with a simple switching motion model.
Definition in file testHybridMotionModel.cpp.
void addMeasurement | ( | HybridBayesNet & | hbn, |
Key | z_key, | ||
Key | x_key, | ||
double | sigma | ||
) |
Definition at line 50 of file testHybridMotionModel.cpp.
std::pair<double, double> approximateDiscreteMarginal | ( | const HybridBayesNet & | hbn, |
const HybridGaussianConditional::shared_ptr & | hybridMotionModel, | ||
const VectorValues & | given, | ||
size_t | N = 100000 |
||
) |
Approximate the discrete marginal P(m1) using importance sampling.
Create importance sampling network q(x0,x1,m) = p(x1|x0,m1) q(x0) P(m1), using q(x0) = N(z0, sigmaQ) to sample x0.
Definition at line 89 of file testHybridMotionModel.cpp.
HybridBayesNet CreateBayesNet | ( | const HybridGaussianConditional::shared_ptr & | hybridMotionModel, |
bool | add_second_measurement = false |
||
) |
Create two state Bayes network with 1 or two measurement models.
Definition at line 66 of file testHybridMotionModel.cpp.
|
static |
Create hybrid motion model p(x1 | x0, m1)
Definition at line 57 of file testHybridMotionModel.cpp.
DiscreteKey m1 | ( | M(1) | , |
2 | |||
) |
int main | ( | ) |
Definition at line 555 of file testHybridMotionModel.cpp.
TEST | ( | HybridGaussianFactorGraph | , |
DifferentCovariances | |||
) |
Test components with differing covariances but the same means. The factor graph is -X1--X2 | M1.
Definition at line 525 of file testHybridMotionModel.cpp.
TEST | ( | HybridGaussianFactorGraph | , |
DifferentMeans | |||
) |
Test components with differing means but the same covariances. The factor graph is -X1--X2 | M1.
Definition at line 450 of file testHybridMotionModel.cpp.
TEST | ( | HybridGaussianFactorGraph | , |
TwoStateModel | |||
) |
Test a model p(z0|x0)p(z1|x1)p(x1|x0,m1)P(m1).
p(x1|x0,m1) has mode-dependent mean but same covariance.
Converting to a factor graph gives us ϕ(x0;z0)ϕ(x1;z1)ϕ(x1,x0,m1)P(m1)
If we only have a measurement on x0, then the posterior probability of m1 should be 0.5/0.5. Getting a measurement on z1 gives use more information.
Definition at line 128 of file testHybridMotionModel.cpp.
TEST | ( | HybridGaussianFactorGraph | , |
TwoStateModel2 | |||
) |
Test a model P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1).
P(x1|x0,m1) has different means and different covariances.
Converting to a factor graph gives us ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)P(m1)
If we only have a measurement on z0, then the P(m1) should be 0.5/0.5. Getting a measurement on z1 gives use more information.
Definition at line 184 of file testHybridMotionModel.cpp.
TEST | ( | HybridGaussianFactorGraph | , |
TwoStateModel3 | |||
) |
Test a model p(z0|x0)p(x1|x0,m1)p(z1|x1)p(m1).
p(x1|x0,m1) has the same means but different covariances.
Converting to a factor graph gives us ϕ(x0)ϕ(x1,x0,m1)ϕ(x1)p(m1)
If we only have a measurement on z0, then the p(m1) should be 0.5/0.5. Getting a measurement on z1 gives use more information.
Definition at line 289 of file testHybridMotionModel.cpp.
TEST | ( | HybridGaussianFactorGraph | , |
TwoStateModel4 | |||
) |
Same model, P(z0|x0)P(x1|x0,m1)P(z1|x1)P(m1), but now with very informative measurements and vastly different motion model: either stand still or move far. This yields a very informative posterior.
Definition at line 376 of file testHybridMotionModel.cpp.