gtsam
3rdparty
cephes
cephes
tandg.c
Go to the documentation of this file.
1
/* tandg.c
2
*
3
* Circular tangent of argument in degrees
4
*
5
*
6
*
7
* SYNOPSIS:
8
*
9
* double x, y, tandg();
10
*
11
* y = tandg( x );
12
*
13
*
14
*
15
* DESCRIPTION:
16
*
17
* Returns the circular tangent of the argument x in degrees.
18
*
19
* Range reduction is modulo pi/4. A rational function
20
* x + x**3 P(x**2)/Q(x**2)
21
* is employed in the basic interval [0, pi/4].
22
*
23
*
24
*
25
* ACCURACY:
26
*
27
* Relative error:
28
* arithmetic domain # trials peak rms
29
* IEEE 0,10 30000 3.2e-16 8.4e-17
30
*
31
* ERROR MESSAGES:
32
*
33
* message condition value returned
34
* tandg total loss x > 1.0e14 (IEEE) 0.0
35
* tandg singularity x = 180 k + 90 INFINITY
36
*/
37
/* cotdg.c
38
*
39
* Circular cotangent of argument in degrees
40
*
41
*
42
*
43
* SYNOPSIS:
44
*
45
* double x, y, cotdg();
46
*
47
* y = cotdg( x );
48
*
49
*
50
*
51
* DESCRIPTION:
52
*
53
* Returns the circular cotangent of the argument x in degrees.
54
*
55
* Range reduction is modulo pi/4. A rational function
56
* x + x**3 P(x**2)/Q(x**2)
57
* is employed in the basic interval [0, pi/4].
58
*
59
*
60
* ERROR MESSAGES:
61
*
62
* message condition value returned
63
* cotdg total loss x > 1.0e14 (IEEE) 0.0
64
* cotdg singularity x = 180 k INFINITY
65
*/
66
67
/*
68
* Cephes Math Library Release 2.0: April, 1987
69
* Copyright 1984, 1987 by Stephen L. Moshier
70
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
71
*/
72
73
#include "
mconf.h
"
74
75
static
double
PI180
= 1.74532925199432957692E-2;
76
static
double
lossth
= 1.0e14;
77
78
static
double
tancot
(
double
,
int
);
79
80
double
tandg
(
double
x
)
81
{
82
return
(
tancot
(
x
, 0));
83
}
84
85
86
double
cotdg
(
double
x
)
87
{
88
return
(
tancot
(
x
, 1));
89
}
90
91
92
static
double
tancot
(
double
xx,
int
cotflg)
93
{
94
double
x
;
95
int
sign
;
96
97
/* make argument positive but save the sign */
98
if
(xx < 0) {
99
x
= -xx;
100
sign
= -1;
101
}
102
else
{
103
x
= xx;
104
sign
= 1;
105
}
106
107
if
(
x
>
lossth
) {
108
sf_error
(
"tandg"
,
SF_ERROR_NO_RESULT
,
NULL
);
109
return
0.0;
110
}
111
112
/* modulo 180 */
113
x
=
x
- 180.0 *
floor
(
x
/ 180.0);
114
if
(cotflg) {
115
if
(
x
<= 90.0) {
116
x
= 90.0 -
x
;
117
}
118
else
{
119
x
=
x
- 90.0;
120
sign
*= -1;
121
}
122
}
123
else
{
124
if
(
x
> 90.0) {
125
x
= 180.0 -
x
;
126
sign
*= -1;
127
}
128
}
129
if
(
x
== 0.0) {
130
return
0.0;
131
}
132
else
if
(
x
== 45.0) {
133
return
sign
* 1.0;
134
}
135
else
if
(
x
== 90.0) {
136
sf_error
((cotflg ?
"cotdg"
:
"tandg"
),
SF_ERROR_SINGULAR
,
NULL
);
137
return
INFINITY;
138
}
139
/* x is now transformed into [0, 90) */
140
return
sign
*
tan
(
x
*
PI180
);
141
}
SF_ERROR_NO_RESULT
@ SF_ERROR_NO_RESULT
Definition:
sf_error.h:15
x
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
Definition:
gnuplot_common_settings.hh:12
PI180
static double PI180
Definition:
tandg.c:75
sign
const EIGEN_DEVICE_FUNC SignReturnType sign() const
Definition:
ArrayCwiseUnaryOps.h:219
tancot
static double tancot(double, int)
Definition:
tandg.c:92
cotdg
double cotdg(double x)
Definition:
tandg.c:86
tan
const EIGEN_DEVICE_FUNC TanReturnType tan() const
Definition:
ArrayCwiseUnaryOps.h:269
lossth
static double lossth
Definition:
tandg.c:76
mconf.h
sf_error
void sf_error(const char *func_name, sf_error_t code, const char *fmt,...)
Definition:
sf_error.c:41
SF_ERROR_SINGULAR
@ SF_ERROR_SINGULAR
Definition:
sf_error.h:10
tandg
double tandg(double x)
Definition:
tandg.c:80
NULL
#define NULL
Definition:
ccolamd.c:609
floor
const EIGEN_DEVICE_FUNC FloorReturnType floor() const
Definition:
ArrayCwiseUnaryOps.h:481
gtsam
Author(s):
autogenerated on Wed Jan 22 2025 04:04:27