Go to the documentation of this file.
27 #define EIGEN_GOOGLEHASH_SUPPORT
28 #include <google/sparse_hash_map>
38 for (int _j=0; _j<NBTRIES; ++_j) { \
40 for (int _k=0; _k<REPEAT; ++_k) { \
61 int main(
int argc,
char *argv[])
65 bool fullyrand =
true;
74 std::cerr <<
"fill pool" <<
"\n";
78 Vector2i ij(internal::random<int>(0,
rows-1),internal::random<int>(0,
cols-1));
87 std::cerr <<
"pool ok" <<
"\n";
91 for (
int i=0;
i<
n; ++
i)
93 int i = internal::random<int>(0,pool.size());
94 coords.push_back(pool[
i]);
95 values.push_back(internal::random<Scalar>());
103 coords.push_back(Vector2i(internal::random<int>(0,
rows-1),
j));
104 values.push_back(internal::random<Scalar>());
107 std::cout <<
"nnz = " << coords.size() <<
"\n";
114 std::cout <<
"Eigen Dense\t" <<
timer.
value() <<
"\n";
126 std::cout <<
"Eigen dynamic\t" <<
timer.
value() <<
"\n";
134 std::cout <<
"Eigen sumeq\t" <<
timer.
value() <<
"\n";
142 std::cout <<
"scipy\t" <<
timer.
value() <<
"\n";
147 std::cout <<
"Eigen google dense\t" <<
timer.
value() <<
"\n";
151 std::cout <<
"Eigen google sparse\t" <<
timer.
value() <<
"\n";
162 std::cout <<
"ublas vecofvec\t" <<
timer.
value() <<
"\n";
187 std::cout <<
"MTL\t" <<
timer.
value() <<
"\n";
196 using namespace Eigen;
199 for (
int i=0;
i<coords.size(); ++
i)
201 mat.insert(coords[
i].
x(), coords[
i].
y()) = vals[
i];
210 using namespace Eigen;
212 mat.reserve(coords.size()/10);
213 for (
int i=0;
i<coords.size(); ++
i)
215 mat.coeffRef(coords[
i].
x(), coords[
i].
y()) += vals[
i];
219 return &
mat.coeffRef(coords[0].
x(), coords[0].
y());
224 using namespace Eigen;
225 int n = coords.size()/
KK;
227 for (
int j=0;
j<
KK; ++
j)
231 for (
int i=
j*
n;
i<(
j+1)*
n; ++
i)
233 aux.
insert(coords[
i].
x(), coords[
i].y()) += vals[
i];
238 return &
mat.coeffRef(coords[0].
x(), coords[0].y());
243 using namespace Eigen;
245 setter.
reserve(coords.size()/10);
246 for (
int i=0;
i<coords.size(); ++
i)
252 return &
mat.coeffRef(coords[0].
x(), coords[0].
y());
257 using namespace Eigen;
261 for (
int i=0;
i<coords.size(); ++
i)
263 setter(coords[
i].
x(), coords[
i].
y()) += vals[
i];
267 return &
mat.coeffRef(coords[0].
x(), coords[0].
y());
273 using namespace Eigen;
277 for (
int i=0;
i<coords.size(); ++
i)
278 setter(coords[
i].
x(), coords[
i].
y()) += vals[
i];
281 return &
mat.coeffRef(coords[0].
x(), coords[0].
y());
286 using namespace Eigen;
290 for (
int i=0;
i<coords.size(); ++
i)
291 setter(coords[
i].
x(), coords[
i].
y()) += vals[
i];
294 return &
mat.coeffRef(coords[0].
x(), coords[0].
y());
310 std::fill(Bp, Bp + n_row, 0);
312 for (
int n = 0;
n < nnz;
n++){
317 for(
int i = 0, cumsum = 0;
i < n_row;
i++){
325 for(
int n = 0;
n < nnz;
n++){
326 int row = Aij[
n].x();
329 Bj[dest] = Aij[
n].y();
335 for(
int i = 0,
last = 0;
i <= n_row;
i++){
344 template<
class T1,
class T2 >
346 return x.first <
y.first;
350 template<
class I,
class T>
356 std::vector< std::pair<I,T> > temp;
358 for(
I i = 0;
i < n_row;
i++){
364 for(
I jj = row_start; jj < row_end; jj++){
365 temp.push_back(std::make_pair(Aj[jj],Ax[jj]));
368 std::sort(temp.begin(),temp.end(),kv_pair_less<I,T>);
370 for(
I jj = row_start,
n = 0; jj < row_end; jj++,
n++){
371 Aj[jj] = temp[
n].first;
372 Ax[jj] = temp[
n].second;
377 template <
class I,
class T>
386 for(
I i = 0;
i < n_row;
i++){
389 while( jj < row_end ){
393 while( jj < row_end && Aj[jj] ==
j ){
407 using namespace Eigen;
409 mat.resizeNonZeros(coords.size());
411 coo_tocsr<Scalar>(
SIZE,
SIZE, coords.size(), coords, vals,
mat._outerIndexPtr(),
mat._innerIndexPtr(),
mat._valuePtr());
418 mat.resizeNonZeros(
mat._outerIndexPtr()[
SIZE]);
420 return &
mat.coeffRef(coords[0].
x(), coords[0].
y());
427 using namespace boost;
428 using namespace boost::numeric;
429 using namespace boost::numeric::ublas;
430 mapped_matrix<Scalar> aux(
SIZE,
SIZE);
431 for (
int i=0;
i<coords.size(); ++
i)
433 aux(coords[
i].
x(), coords[
i].
y()) += vals[
i];
436 compressed_matrix<Scalar>
mat(aux);
466 using namespace boost;
467 using namespace boost::numeric;
468 using namespace boost::numeric::ublas;
471 generalized_vector_of_vector<Scalar, row_major, ublas::vector<coordinate_vector<Scalar> > > aux(
SIZE,
SIZE);
472 for (
int i=0;
i<coords.size(); ++
i)
474 aux(coords[
i].
x(), coords[
i].
y()) += vals[
i];
477 compressed_matrix<Scalar,row_major>
mat(aux);
EIGEN_DONT_INLINE Scalar * setrand_mtl(const Coordinates &coords, const Values &vals)
A sparse matrix class designed for matrix assembly purpose.
Namespace containing all symbols from the Eigen library.
EIGEN_DONT_INLINE Scalar * setrand_scipy(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_eigen_compact(const Coordinates &coords, const Values &vals)
void csr_sum_duplicates(const I n_row, const I n_col, I Ap[], I Aj[], T Ax[])
EIGEN_DONT_INLINE Scalar * setrand_eigen_sumeq(const Coordinates &coords, const Values &vals)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
void reserve(Index reserveSize=1000)
Scalar & insert(Index row, Index col)
static const symbolic::SymbolExpr< internal::symbolic_last_tag > last
std::vector< Vector2i > Coordinates
void coo_tocsr(const int n_row, const int n_col, const int nnz, const Coordinates Aij, const Values Ax, int Bp[], int Bj[], T Bx[])
double value(int TIMER=CPU_TIMER) const
EIGEN_DONT_INLINE Scalar * setrand_ublas_genvec(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_eigen_google_sparse(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_ublas_compressed(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_eigen_google_dense(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_ublas_mapped(const Coordinates &coords, const Values &vals)
Scalar & coeffRef(Index row, Index col)
EIGEN_DONT_INLINE Scalar * setrand_eigen_gnu_hash(const Coordinates &coords, const Values &vals)
void csr_sort_indices(const I n_row, const I Ap[], I Aj[], T Ax[])
std::vector< float > Values
int main(int argc, char *argv[])
EIGEN_DONT_INLINE Scalar * setinnerrand_eigen(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_eigen_dynamic(const Coordinates &coords, const Values &vals)
EIGEN_DONT_INLINE Scalar * setrand_ublas_coord(const Coordinates &coords, const Values &vals)
The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access.
bool kv_pair_less(const std::pair< T1, T2 > &x, const std::pair< T1, T2 > &y)
#define EIGEN_DONT_INLINE
gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:04:18