Go to the documentation of this file.
10 #define ADD_NO_PRUNING
18 using namespace gtsam;
24 s.addStudent(
"Michael N",
"AI",
"Autonomy",
"Perception",
"Tucker Balch");
27 s.addStudent(
"Tucker H",
"Controls",
"AI",
"Perception",
"Jim Rehg");
30 s.addStudent(
"Jake H",
"Controls",
"AI",
"Perception",
"Henrik Christensen");
33 s.addStudent(
"Tobias K",
"Controls",
"AI",
"Autonomy",
"Mike Stilman");
36 s.addStudent(
"Shu J",
"Controls",
"AI",
"HRI",
"N/A 1");
39 s.addStudent(
"Akansel C",
"AI",
"Autonomy",
"Mechanics",
40 "Henrik Christensen");
43 s.addStudent(
"Tiffany C",
"Controls",
"N/A 1",
"N/A 2",
"Charlie Kemp");
54 string path(
"../../../gtsam_unstable/discrete/examples/");
57 s.addArea(
"Harvey Lipkin",
"Mechanics");
58 s.addArea(
"Wayne Book",
"Mechanics");
59 s.addArea(
"Jun Ueda",
"Mechanics");
62 s.addArea(
"Patricio Vela",
"Controls");
63 s.addArea(
"Magnus Egerstedt",
"Controls");
64 s.addArea(
"Jun Ueda",
"Controls");
67 s.addArea(
"Jim Rehg",
"Perception");
68 s.addArea(
"Irfan Essa",
"Perception");
69 s.addArea(
"Aaron Bobick",
"Perception");
70 s.addArea(
"Henrik Christensen",
"Perception");
72 s.addArea(
"Mike Stilman",
"AI");
73 s.addArea(
"Henrik Christensen",
"AI");
74 s.addArea(
"Frank Dellaert",
"AI");
75 s.addArea(
"Ayanna Howard",
"AI");
78 s.addArea(
"Ayanna Howard",
"Autonomy");
80 s.addArea(
"Charlie Kemp",
"Autonomy");
81 s.addArea(
"Tucker Balch",
"Autonomy");
82 s.addArea(
"Ron Arkin",
"Autonomy");
84 s.addArea(
"Andrea Thomaz",
"HRI");
85 s.addArea(
"Karen Feigh",
"HRI");
86 s.addArea(
"Charlie Kemp",
"HRI");
89 s.addArea(
"N/A 1",
"N/A 1");
90 s.addArea(
"N/A 2",
"N/A 2");
93 for (
size_t i = 0;
i < nrStudents;
i++)
112 *std::dynamic_pointer_cast<DecisionTreeFactor>(scheduler.
product());
118 SETDEBUG(
"DiscreteConditional::DiscreteConditional",
true);
133 SETDEBUG(
"DiscreteConditional::COUNT",
true);
138 vector<double> slotsAvailable(
largeExample(0).nrTimeSlots(), 1.0);
141 for (
size_t s = 0;
s < 7;
s++) {
163 size_t bestSlot = root->argmax();
168 values[dkey.first] = bestSlot;
169 size_t count = (*root)(
values);
172 slotsAvailable[bestSlot] = 0.0;
173 cout << scheduler.
studentName(6 -
s) <<
" = " << scheduler.
slotName(bestSlot) <<
" (" << bestSlot
174 <<
"), count = " << count << endl;
198 size_t slot, vector<Scheduler>& schedulers) {
201 SETDEBUG(
"Scheduler::buildGraph",
false);
205 schedulers.push_back(scheduler);
211 vector<Scheduler> schedulers;
212 vector<DiscreteBayesNet::shared_ptr> samplers(7);
215 vector<size_t> slots{16, 17, 11, 2, 0, 5, 9};
216 for (
size_t i = 0;
i < 7;
i++)
220 for (
size_t n = 0;
n < 500;
n++) {
221 vector<size_t>
stats(19, 0);
222 vector<DiscreteValues>
samples;
223 for (
size_t i = 0;
i < 7;
i++) {
224 samples.push_back(samplers[
i]->sample());
230 if (nz >= 15 &&
max <= 2) {
231 cout <<
"Sampled schedule " << (
n + 1) <<
", min = " <<
min <<
", nz = " << nz
232 <<
", max = " <<
max << endl;
233 for (
size_t i = 0;
i < 7;
i++) {
234 cout << schedulers[
i].studentName(0) <<
" : " << schedulers[
i].slotName(
290 scheduler.
addStudent(
"Carlos N",
"Perception",
"AI",
"Autonomy",
291 "Henrik Christensen");
292 scheduler.
print(
"scheduler");
295 vector<size_t> slots{16, 17, 11, 2, 0, 5, 9, 14};
296 vector<double> slotsAvailable(scheduler.
nrTimeSlots(), 1.0);
298 slotsAvailable[
s] = 0;
314 size_t bestSlot = root->argmax();
319 values[dkey.first] = bestSlot;
320 size_t count = (*root)(
values);
321 cout << scheduler.
studentName(0) <<
" = " << scheduler.
slotName(bestSlot) <<
" (" << bestSlot
322 <<
"), count = " << count << endl;
324 for (
size_t n = 0;
n < 10;
n++) {
325 auto sample0 = chordal->sample();
void solveStaged(size_t addMutex=2)
const std::string & slotName(size_t s) const
#define tictoc_finishedIteration()
DiscreteBayesNet::shared_ptr createSampler(size_t i, size_t slot, vector< Scheduler > &schedulers)
KeyFormatter DefaultKeyFormatter
Assign default key formatter.
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set samples
void addStudentSpecificConstraints(size_t i, std::optional< size_t > slot={})
static constexpr bool debug
DiscreteBayesNet::shared_ptr eliminate() const
void addStudent(Scheduler &s, size_t i)
std::vector< Vector3 > large
DiscreteFactor::shared_ptr product() const
void printAssignment(const DiscreteValues &assignment) const
std::shared_ptr< This > shared_ptr
shared_ptr to this class
std::pair< Key, size_t > DiscreteKey
size_t nrStudents() const
current number of students
void setSlotsAvailable(const std::vector< double > &slotsAvailable)
std::shared_ptr< This > shared_ptr
void product(const MatrixType &m)
void print(const std::string &s="Scheduler", const KeyFormatter &formatter=DefaultKeyFormatter) const override
const std::string & studentName(size_t i) const
DiscreteValues optimize(OptionalOrderingType orderingType={}) const
Find the maximum probable explanation (MPE) by doing max-product.
void buildGraph(size_t mutexBound=7)
Scheduler largeExample(size_t nrStudents=7)
void addStudent(const std::string &studentName, const std::string &area1, const std::string &area2, const std::string &area3, const std::string &advisor)
const DiscreteKey & studentKey(size_t i) const
size_t nrTimeSlots() const
gtsam
Author(s):
autogenerated on Wed Mar 19 2025 03:03:21