Go to the documentation of this file.
12 #define EIGEN_STACK_ALLOCATION_LIMIT 0
14 #define EIGEN_RUNTIME_NO_MALLOC
17 #include <Eigen/Cholesky>
18 #include <Eigen/Eigenvalues>
36 Scalar s1 = internal::random<Scalar>();
38 Index r = internal::random<Index>(0,
rows-1),
39 c = internal::random<Index>(0,
cols-1);
46 m2.col(0).noalias() =
m1 *
m1.col(0);
47 m2.col(0).noalias() -=
m1.adjoint() *
m1.col(0);
48 m2.col(0).noalias() -=
m1 *
m1.row(0).adjoint();
49 m2.col(0).noalias() -=
m1.adjoint() *
m1.row(0).adjoint();
51 m2.row(0).noalias() =
m1.row(0) *
m1;
52 m2.row(0).noalias() -=
m1.row(0) *
m1.adjoint();
53 m2.row(0).noalias() -=
m1.col(0).adjoint() *
m1;
54 m2.row(0).noalias() -=
m1.col(0).adjoint() *
m1.adjoint();
57 m2.col(0).noalias() =
m1.template triangularView<Upper>() *
m1.col(0);
58 m2.col(0).noalias() -=
m1.adjoint().template triangularView<Upper>() *
m1.col(0);
59 m2.col(0).noalias() -=
m1.template triangularView<Upper>() *
m1.row(0).adjoint();
60 m2.col(0).noalias() -=
m1.adjoint().template triangularView<Upper>() *
m1.row(0).adjoint();
62 m2.row(0).noalias() =
m1.row(0) *
m1.template triangularView<Upper>();
63 m2.row(0).noalias() -=
m1.row(0) *
m1.adjoint().template triangularView<Upper>();
64 m2.row(0).noalias() -=
m1.col(0).adjoint() *
m1.template triangularView<Upper>();
65 m2.row(0).noalias() -=
m1.col(0).adjoint() *
m1.adjoint().template triangularView<Upper>();
68 m2.col(0).noalias() =
m1.template selfadjointView<Upper>() *
m1.col(0);
69 m2.col(0).noalias() -=
m1.adjoint().template selfadjointView<Upper>() *
m1.col(0);
70 m2.col(0).noalias() -=
m1.template selfadjointView<Upper>() *
m1.row(0).adjoint();
71 m2.col(0).noalias() -=
m1.adjoint().template selfadjointView<Upper>() *
m1.row(0).adjoint();
73 m2.row(0).noalias() =
m1.row(0) *
m1.template selfadjointView<Upper>();
74 m2.row(0).noalias() -=
m1.row(0) *
m1.adjoint().template selfadjointView<Upper>();
75 m2.row(0).noalias() -=
m1.col(0).adjoint() *
m1.template selfadjointView<Upper>();
76 m2.row(0).noalias() -=
m1.col(0).adjoint() *
m1.adjoint().template selfadjointView<Upper>();
79 m2.template selfadjointView<Lower>().rankUpdate(
m1.col(0),-1);
80 m2.template selfadjointView<Upper>().rankUpdate(
m1.row(0),-1);
81 m2.template selfadjointView<Lower>().rankUpdate(
m1.col(0),
m1.col(0));
84 m2.template selfadjointView<Lower>().rankUpdate(
m1);
85 m2 +=
m2.template triangularView<Upper>() *
m1;
86 m2.template triangularView<Upper>() =
m2 *
m2;
87 m1 +=
m1.template selfadjointView<Lower>() *
m2;
91 template<
typename Scalar>
94 const int maxSize = 16;
110 maxSize, maxSize> ComplexMatrix;
114 const ComplexMatrix complexA(ComplexMatrix::Random(
size,
size));
163 Eigen::ArrayXXd
A0(0,0);
164 Eigen::ArrayXd
v0(0);
184 RefT
r3(
m.transpose());
185 RefT r4(
m.topLeftCorner(
rows/2,
cols/2).transpose());
208 Eigen::MatrixXd
M1 = MatrixXd::Random(3,3);
212 Eigen::internal::set_is_malloc_allowed(
false);
Matrix< SCALARB, Dynamic, Dynamic, opt_B > B
LU decomposition of a matrix with partial pivoting, and related features.
HessenbergDecomposition & compute(const EigenBase< InputType > &matrix)
Computes Hessenberg decomposition of given matrix.
Tridiagonal decomposition of a selfadjoint matrix.
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
void ctms_decompositions()
EIGEN_DEVICE_FUNC SelfAdjointEigenSolver & compute(const EigenBase< InputType > &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix.
EIGEN_DECLARE_TEST(nomalloc)
FullPivHouseholderQR & compute(const EigenBase< InputType > &matrix)
LU decomposition of a matrix with complete pivoting, and related features.
EigenSolver & compute(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
Tridiagonalization & compute(const EigenBase< InputType > &matrix)
Computes tridiagonal decomposition of given matrix.
#define VERIFY_RAISES_ASSERT(a)
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
#define CALL_SUBTEST_4(FUNC)
JacobiSVD & compute(const MatrixType &matrix, unsigned int computationOptions)
Method performing the decomposition of given matrix using custom options.
Eigen::Matrix< double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > Matrix
#define CALL_SUBTEST_3(FUNC)
Householder rank-revealing QR decomposition of a matrix with full pivoting.
LLT & compute(const EigenBase< InputType > &matrix)
#define CALL_SUBTEST_1(FUNC)
LDLT & compute(const EigenBase< InputType > &matrix)
Computes eigenvalues and eigenvectors of selfadjoint matrices.
FullPivLU & compute(const EigenBase< InputType > &matrix)
ColPivHouseholderQR & compute(const EigenBase< InputType > &matrix)
#define CALL_SUBTEST_5(FUNC)
Robust Cholesky decomposition of a matrix with pivoting.
void nomalloc(const MatrixType &m)
Householder rank-revealing QR decomposition of a matrix with column-pivoting.
#define CALL_SUBTEST_6(FUNC)
#define CALL_SUBTEST_2(FUNC)
#define VERIFY_IS_APPROX(a, b)
Two-sided Jacobi SVD decomposition of a rectangular matrix.
static const DiscreteKey m3(M(3), 2)
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
A matrix or vector expression mapping an existing expression.
ComplexSchur & compute(const EigenBase< InputType > &matrix, bool computeU=true)
Computes Schur decomposition of given matrix.
void test_reference(const MatrixType &m)
Computes eigenvalues and eigenvectors of general complex matrices.
Computes eigenvalues and eigenvectors of general matrices.
Array< int, Dynamic, 1 > v
ComplexEigenSolver & compute(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
The matrix class, also used for vectors and row-vectors.
HouseholderQR & compute(const EigenBase< InputType > &matrix)
Reduces a square matrix to Hessenberg form by an orthogonal similarity transformation.
#define CALL_SUBTEST_7(FUNC)
#define CALL_SUBTEST_8(FUNC)
PartialPivLU & compute(const EigenBase< InputType > &matrix)
Eigen::Matrix< double, Eigen::Dynamic, 1 > Vector
Performs a complex Schur decomposition of a real or complex square matrix.
const Solve< Derived, Rhs > solve(const MatrixBase< Rhs > &b) const
Householder QR decomposition of a matrix.
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:03:08