eigensolver_generic.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <limits>
13 #include <Eigen/Eigenvalues>
14 
15 template<typename EigType,typename MatType>
16 void check_eigensolver_for_given_mat(const EigType &eig, const MatType& a)
17 {
20  typedef typename std::complex<RealScalar> Complex;
21  Index n = a.rows();
22  VERIFY_IS_EQUAL(eig.info(), Success);
23  VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix());
24  VERIFY_IS_APPROX(a.template cast<Complex>() * eig.eigenvectors(),
25  eig.eigenvectors() * eig.eigenvalues().asDiagonal());
26  VERIFY_IS_APPROX(eig.eigenvectors().colwise().norm(), RealVectorType::Ones(n).transpose());
27  VERIFY_IS_APPROX(a.eigenvalues(), eig.eigenvalues());
28 }
29 
30 template<typename MatrixType> void eigensolver(const MatrixType& m)
31 {
32  /* this test covers the following files:
33  EigenSolver.h
34  */
35  Index rows = m.rows();
36  Index cols = m.cols();
37 
38  typedef typename MatrixType::Scalar Scalar;
39  typedef typename NumTraits<Scalar>::Real RealScalar;
40  typedef typename std::complex<RealScalar> Complex;
41 
42  MatrixType a = MatrixType::Random(rows,cols);
43  MatrixType a1 = MatrixType::Random(rows,cols);
44  MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
45 
46  EigenSolver<MatrixType> ei0(symmA);
49  VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
50  (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
51 
54 
60  if (rows > 2) {
61  ei2.setMaxIterations(1).compute(a);
64  }
65 
66  EigenSolver<MatrixType> eiNoEivecs(a, false);
67  VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
68  VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
70 
71  MatrixType id = MatrixType::Identity(rows, cols);
72  VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
73 
74  if (rows > 2 && rows < 20)
75  {
76  // Test matrix with NaN
77  a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
80  }
81 
82  // regression test for bug 1098
83  {
84  EigenSolver<MatrixType> eig(a.adjoint() * a);
85  eig.compute(a.adjoint() * a);
86  }
87 
88  // regression test for bug 478
89  {
90  a.setZero();
94  VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
95  }
96 }
97 
98 template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
99 {
101  VERIFY_RAISES_ASSERT(eig.eigenvectors());
102  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
103  VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix());
104  VERIFY_RAISES_ASSERT(eig.eigenvalues());
105 
106  MatrixType a = MatrixType::Random(m.rows(),m.cols());
107  eig.compute(a, false);
108  VERIFY_RAISES_ASSERT(eig.eigenvectors());
109  VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors());
110 }
111 
112 
113 template<typename CoeffType>
115 make_companion(const CoeffType& coeffs)
116 {
117  Index n = coeffs.size()-1;
119  res.setZero();
120  res.row(0) = -coeffs.tail(n) / coeffs(0);
121  res.diagonal(-1).setOnes();
122  return res;
123 }
124 
125 template<int>
127 {
128  {
129  // regression test for bug 793
130  MatrixXd a(3,3);
131  a << 0, 0, 1,
132  1, 1, 1,
133  1, 1e+200, 1;
135  double scale = 1e-200; // scale to avoid overflow during the comparisons
136  VERIFY_IS_APPROX(a * eig.pseudoEigenvectors()*scale, eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()*scale);
137  VERIFY_IS_APPROX(a * eig.eigenvectors()*scale, eig.eigenvectors() * eig.eigenvalues().asDiagonal()*scale);
138  }
139  {
140  // check a case where all eigenvalues are null.
141  MatrixXd a(2,2);
142  a << 1, 1,
143  -1, -1;
145  VERIFY_IS_APPROX(eig.pseudoEigenvectors().squaredNorm(), 2.);
146  VERIFY_IS_APPROX((a * eig.pseudoEigenvectors()).norm()+1., 1.);
147  VERIFY_IS_APPROX((eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()).norm()+1., 1.);
148  VERIFY_IS_APPROX((a * eig.eigenvectors()).norm()+1., 1.);
149  VERIFY_IS_APPROX((eig.eigenvectors() * eig.eigenvalues().asDiagonal()).norm()+1., 1.);
150  }
151 
152  // regression test for bug 933
153  {
154  {
155  VectorXd coeffs(5); coeffs << 1, -3, -175, -225, 2250;
156  MatrixXd C = make_companion(coeffs);
159  }
160  {
161  // this test is tricky because it requires high accuracy in smallest eigenvalues
162  VectorXd coeffs(5); coeffs << 6.154671e-15, -1.003870e-10, -9.819570e-01, 3.995715e+03, 2.211511e+08;
163  MatrixXd C = make_companion(coeffs);
166  Index n = C.rows();
167  for(Index i=0;i<n;++i)
168  {
169  typedef std::complex<double> Complex;
170  MatrixXcd ac = C.cast<Complex>();
171  ac.diagonal().array() -= eig.eigenvalues()(i);
172  VectorXd sv = ac.jacobiSvd().singularValues();
173  // comparing to sv(0) is not enough here to catch the "bug",
174  // the hard-coded 1.0 is important!
175  VERIFY_IS_MUCH_SMALLER_THAN(sv(n-1), 1.0);
176  }
177  }
178  }
179  // regression test for bug 1557
180  {
181  // this test is interesting because it contains zeros on the diagonal.
182  MatrixXd A_bug1557(3,3);
183  A_bug1557 << 0, 0, 0, 1, 0, 0.5887907064808635127, 0, 1, 0;
184  EigenSolver<MatrixXd> eig(A_bug1557);
186  }
187 
188  // regression test for bug 1174
189  {
190  Index n = 12;
191  MatrixXf A_bug1174(n,n);
192  A_bug1174 << 262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
193  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
194  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
195  262144, 0, 0, 262144, 786432, 0, 0, 0, 0, 0, 0, 786432,
196  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
197  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
198  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
199  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
200  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
201  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
202  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0,
203  0, 262144, 262144, 0, 0, 262144, 262144, 262144, 262144, 262144, 262144, 0;
204  EigenSolver<MatrixXf> eig(A_bug1174);
206  }
207 }
208 
209 EIGEN_DECLARE_TEST(eigensolver_generic)
210 {
211  int s = 0;
212  for(int i = 0; i < g_repeat; i++) {
213  CALL_SUBTEST_1( eigensolver(Matrix4f()) );
214  s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
215  CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) );
217 
218  // some trivial but implementation-wise tricky cases
219  CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) );
220  CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) );
222  CALL_SUBTEST_4( eigensolver(Matrix2d()) );
223  }
224 
226  s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
230 
231  // Test problem size constructors
233 
234  // regression test for bug 410
236  {
237  MatrixXd A(1,1);
238  A(0,0) = std::sqrt(-1.); // is Not-a-Number
241  }
242  );
243 
244  CALL_SUBTEST_2( eigensolver_generic_extra<0>() );
245 
247 }
Complex
std::complex< RealScalar > Complex
Definition: gtsam/3rdparty/Eigen/blas/common.h:94
Eigen::NumericalIssue
@ NumericalIssue
Definition: Constants.h:444
VERIFY_IS_MUCH_SMALLER_THAN
#define VERIFY_IS_MUCH_SMALLER_THAN(a, b)
Definition: main.h:390
Eigen::EigenSolver::setMaxIterations
EigenSolver & setMaxIterations(Index maxIters)
Sets the maximum number of iterations allowed.
Definition: EigenSolver.h:288
s
RealScalar s
Definition: level1_cplx_impl.h:126
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
MatrixType
MatrixXf MatrixType
Definition: benchmark-blocking-sizes.cpp:52
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
check_eigensolver_for_given_mat
void check_eigensolver_for_given_mat(const EigType &eig, const MatType &a)
Definition: eigensolver_generic.cpp:16
Eigen::Success
@ Success
Definition: Constants.h:442
res
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
Eigen::EigenSolver::compute
EigenSolver & compute(const EigenBase< InputType > &matrix, bool computeEigenvectors=true)
Computes eigendecomposition of given matrix.
rows
int rows
Definition: Tutorial_commainit_02.cpp:1
solver
BiCGSTAB< SparseMatrix< double > > solver
Definition: BiCGSTAB_simple.cpp:5
eigensolver
void eigensolver(const MatrixType &m)
Definition: eigensolver_generic.cpp:30
VERIFY_RAISES_ASSERT
#define VERIFY_RAISES_ASSERT(a)
Definition: main.h:340
A
Matrix< SCALARA, Dynamic, Dynamic, opt_A > A
Definition: bench_gemm.cpp:48
CALL_SUBTEST_4
#define CALL_SUBTEST_4(FUNC)
Definition: split_test_helper.h:22
Eigen::EigenSolver::pseudoEigenvectors
const MatrixType & pseudoEigenvectors() const
Returns the pseudo-eigenvectors of given matrix.
Definition: EigenSolver.h:199
n
int n
Definition: BiCGSTAB_simple.cpp:1
align_3::a1
Point2 a1
Definition: testPose2.cpp:769
CALL_SUBTEST_3
#define CALL_SUBTEST_3(FUNC)
Definition: split_test_helper.h:16
CALL_SUBTEST_1
#define CALL_SUBTEST_1(FUNC)
Definition: split_test_helper.h:4
Eigen::RealSchur
Performs a real Schur decomposition of a square matrix.
Definition: RealSchur.h:54
Eigen::NoConvergence
@ NoConvergence
Definition: Constants.h:446
scale
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy y set format x g set format y g set format x2 g set format y2 g set format z g set angles radians set nogrid set key title set key left top Right noreverse box linetype linewidth samplen spacing width set nolabel set noarrow set nologscale set logscale x set set pointsize set encoding default set nopolar set noparametric set set set set surface set nocontour set clabel set mapping cartesian set nohidden3d set cntrparam order set cntrparam linear set cntrparam levels auto set cntrparam points set size set set xzeroaxis lt lw set x2zeroaxis lt lw set yzeroaxis lt lw set y2zeroaxis lt lw set tics in set ticslevel set tics scale
Definition: gnuplot_common_settings.hh:54
Eigen::EigenSolver::pseudoEigenvalueMatrix
MatrixType pseudoEigenvalueMatrix() const
Returns the block-diagonal matrix in the pseudo-eigendecomposition.
Definition: EigenSolver.h:324
Eigen::PlainObjectBase::rows
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition: PlainObjectBase.h:143
CALL_SUBTEST_5
#define CALL_SUBTEST_5(FUNC)
Definition: split_test_helper.h:28
Eigen::g_repeat
static int g_repeat
Definition: main.h:169
eigensolver_verify_assert
void eigensolver_verify_assert(const MatrixType &m)
Definition: eigensolver_generic.cpp:98
m
Matrix3f m
Definition: AngleAxis_mimic_euler.cpp:1
Eigen::EigenSolver::eigenvectors
EigenvectorsType eigenvectors() const
Returns the eigenvectors of given matrix.
Definition: EigenSolver.h:345
eig
SelfAdjointEigenSolver< PlainMatrixType > eig(mat, computeVectors?ComputeEigenvectors:EigenvaluesOnly)
CALL_SUBTEST_2
#define CALL_SUBTEST_2(FUNC)
Definition: split_test_helper.h:10
VERIFY_IS_APPROX
#define VERIFY_IS_APPROX(a, b)
Definition: integer_types.cpp:15
RealScalar
NumTraits< Scalar >::Real RealScalar
Definition: bench_gemm.cpp:47
a
ArrayXXi a
Definition: Array_initializer_list_23_cxx11.cpp:1
VERIFY_IS_NOT_EQUAL
#define VERIFY_IS_NOT_EQUAL(a, b)
Definition: main.h:387
C
Matrix< Scalar, Dynamic, Dynamic > C
Definition: bench_gemm.cpp:50
main.h
eigensolver_generic_extra
void eigensolver_generic_extra()
Definition: eigensolver_generic.cpp:126
EIGEN_TEST_MAX_SIZE
#define EIGEN_TEST_MAX_SIZE
Definition: boostmultiprec.cpp:16
Eigen::EigenSolver
Computes eigenvalues and eigenvectors of general matrices.
Definition: EigenSolver.h:64
Eigen::Matrix
The matrix class, also used for vectors and row-vectors.
Definition: 3rdparty/Eigen/Eigen/src/Core/Matrix.h:178
make_companion
Matrix< typename CoeffType::Scalar, Dynamic, Dynamic > make_companion(const CoeffType &coeffs)
Definition: eigensolver_generic.cpp:115
cols
int cols
Definition: Tutorial_commainit_02.cpp:1
Eigen::EigenSolver::info
ComputationInfo info() const
Definition: EigenSolver.h:281
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(eigensolver_generic)
Definition: eigensolver_generic.cpp:209
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:232
ceres::sqrt
Jet< T, N > sqrt(const Jet< T, N > &f)
Definition: jet.h:418
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Eigen::EigenSolver::getMaxIterations
Index getMaxIterations()
Returns the maximum number of iterations.
Definition: EigenSolver.h:295
TEST_SET_BUT_UNUSED_VARIABLE
#define TEST_SET_BUT_UNUSED_VARIABLE(X)
Definition: main.h:121
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
CALL_SUBTEST
#define CALL_SUBTEST(FUNC)
Definition: main.h:399
VERIFY
#define VERIFY(a)
Definition: main.h:380
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
Eigen::EigenSolver::eigenvalues
const EigenvalueType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition: EigenSolver.h:244


gtsam
Author(s):
autogenerated on Wed Jan 22 2025 04:01:26