cxx11_tensor_inflation_sycl.cpp
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016
5 // Mehdi Goli Codeplay Software Ltd.
6 // Ralph Potter Codeplay Software Ltd.
7 // Luke Iwanski Codeplay Software Ltd.
8 // Contact: <eigen@codeplay.com>
9 //
10 // This Source Code Form is subject to the terms of the Mozilla
11 // Public License v. 2.0. If a copy of the MPL was not distributed
12 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
13 
14 #define EIGEN_TEST_NO_LONGDOUBLE
15 #define EIGEN_TEST_NO_COMPLEX
16 
17 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
18 #define EIGEN_USE_SYCL
19 
20 #include "main.h"
21 #include <unsupported/Eigen/CXX11/Tensor>
22 
23 using Eigen::Tensor;
24 
25 // Inflation Definition for each dimension the inflated val would be
26 //((dim-1)*strid[dim] +1)
27 
28 // for 1 dimension vector of size 3 with value (4,4,4) with the inflated stride value of 3 would be changed to
29 // tensor of size (2*3) +1 = 7 with the value of
30 // (4, 0, 0, 4, 0, 0, 4).
31 
32 template <typename DataType, int DataLayout, typename IndexType>
33 void test_simple_inflation_sycl(const Eigen::SyclDevice &sycl_device) {
34 
35 
36  IndexType sizeDim1 = 2;
37  IndexType sizeDim2 = 3;
38  IndexType sizeDim3 = 5;
39  IndexType sizeDim4 = 7;
40  array<IndexType, 4> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
42  Tensor<DataType, 4, DataLayout,IndexType> no_stride(tensorRange);
43  tensor.setRandom();
44 
46  strides[0] = 1;
47  strides[1] = 1;
48  strides[2] = 1;
49  strides[3] = 1;
50 
51 
52  const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
53  DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
54  DataType* gpu_data_no_stride = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
55 
56  TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
57  TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_no_stride(gpu_data_no_stride, tensorRange);
58 
59  sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
60  gpu_no_stride.device(sycl_device)=gpu_tensor.inflate(strides);
61  sycl_device.memcpyDeviceToHost(no_stride.data(), gpu_data_no_stride, tensorBuffSize);
62 
63  VERIFY_IS_EQUAL(no_stride.dimension(0), sizeDim1);
64  VERIFY_IS_EQUAL(no_stride.dimension(1), sizeDim2);
65  VERIFY_IS_EQUAL(no_stride.dimension(2), sizeDim3);
66  VERIFY_IS_EQUAL(no_stride.dimension(3), sizeDim4);
67 
68  for (IndexType i = 0; i < 2; ++i) {
69  for (IndexType j = 0; j < 3; ++j) {
70  for (IndexType k = 0; k < 5; ++k) {
71  for (IndexType l = 0; l < 7; ++l) {
72  VERIFY_IS_EQUAL(tensor(i,j,k,l), no_stride(i,j,k,l));
73  }
74  }
75  }
76  }
77 
78 
79  strides[0] = 2;
80  strides[1] = 4;
81  strides[2] = 2;
82  strides[3] = 3;
83 
84  IndexType inflatedSizeDim1 = 3;
85  IndexType inflatedSizeDim2 = 9;
86  IndexType inflatedSizeDim3 = 9;
87  IndexType inflatedSizeDim4 = 19;
88  array<IndexType, 4> inflatedTensorRange = {{inflatedSizeDim1, inflatedSizeDim2, inflatedSizeDim3, inflatedSizeDim4}};
89 
90  Tensor<DataType, 4, DataLayout, IndexType> inflated(inflatedTensorRange);
91 
92  const size_t inflatedTensorBuffSize =inflated.size()*sizeof(DataType);
93  DataType* gpu_data_inflated = static_cast<DataType*>(sycl_device.allocate(inflatedTensorBuffSize));
94  TensorMap<Tensor<DataType, 4, DataLayout, IndexType>> gpu_inflated(gpu_data_inflated, inflatedTensorRange);
95  gpu_inflated.device(sycl_device)=gpu_tensor.inflate(strides);
96  sycl_device.memcpyDeviceToHost(inflated.data(), gpu_data_inflated, inflatedTensorBuffSize);
97 
98  VERIFY_IS_EQUAL(inflated.dimension(0), inflatedSizeDim1);
99  VERIFY_IS_EQUAL(inflated.dimension(1), inflatedSizeDim2);
100  VERIFY_IS_EQUAL(inflated.dimension(2), inflatedSizeDim3);
101  VERIFY_IS_EQUAL(inflated.dimension(3), inflatedSizeDim4);
102 
103  for (IndexType i = 0; i < inflatedSizeDim1; ++i) {
104  for (IndexType j = 0; j < inflatedSizeDim2; ++j) {
105  for (IndexType k = 0; k < inflatedSizeDim3; ++k) {
106  for (IndexType l = 0; l < inflatedSizeDim4; ++l) {
107  if (i % strides[0] == 0 &&
108  j % strides[1] == 0 &&
109  k % strides[2] == 0 &&
110  l % strides[3] == 0) {
111  VERIFY_IS_EQUAL(inflated(i,j,k,l),
112  tensor(i/strides[0], j/strides[1], k/strides[2], l/strides[3]));
113  } else {
114  VERIFY_IS_EQUAL(0, inflated(i,j,k,l));
115  }
116  }
117  }
118  }
119  }
120  sycl_device.deallocate(gpu_data_tensor);
121  sycl_device.deallocate(gpu_data_no_stride);
122  sycl_device.deallocate(gpu_data_inflated);
123 }
124 
125 template<typename DataType, typename dev_Selector> void sycl_inflation_test_per_device(dev_Selector s){
126  QueueInterface queueInterface(s);
127  auto sycl_device = Eigen::SyclDevice(&queueInterface);
128  test_simple_inflation_sycl<DataType, RowMajor, int64_t>(sycl_device);
129  test_simple_inflation_sycl<DataType, ColMajor, int64_t>(sycl_device);
130 }
131 EIGEN_DECLARE_TEST(cxx11_tensor_inflation_sycl)
132 {
133  for (const auto& device :Eigen::get_sycl_supported_devices()) {
134  CALL_SUBTEST(sycl_inflation_test_per_device<float>(device));
135  }
136 }
Eigen::Tensor::dimension
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index dimension(std::size_t n) const
Definition: Tensor.h:101
Eigen::Tensor
The tensor class.
Definition: Tensor.h:63
Eigen::internal::strides
EIGEN_ALWAYS_INLINE DSizes< IndexType, NumDims > strides(const DSizes< IndexType, NumDims > &dimensions)
Definition: TensorBlock.h:26
sycl_inflation_test_per_device
void sycl_inflation_test_per_device(dev_Selector s)
Definition: cxx11_tensor_inflation_sycl.cpp:125
s
RealScalar s
Definition: level1_cplx_impl.h:126
Eigen::array
Definition: EmulateArray.h:21
VERIFY_IS_EQUAL
#define VERIFY_IS_EQUAL(a, b)
Definition: main.h:386
EIGEN_DECLARE_TEST
EIGEN_DECLARE_TEST(cxx11_tensor_inflation_sycl)
Definition: cxx11_tensor_inflation_sycl.cpp:131
j
std::ptrdiff_t j
Definition: tut_arithmetic_redux_minmax.cpp:2
l
static const Line3 l(Rot3(), 1, 1)
Eigen::TensorMap
A tensor expression mapping an existing array of data.
Definition: TensorForwardDeclarations.h:52
Eigen::TensorBase< Tensor< Scalar_, NumIndices_, Options_, IndexType_ > >::setRandom
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Tensor< Scalar_, NumIndices_, Options_, IndexType_ > & setRandom()
Definition: TensorBase.h:996
main.h
test_simple_inflation_sycl
void test_simple_inflation_sycl(const Eigen::SyclDevice &sycl_device)
Definition: cxx11_tensor_inflation_sycl.cpp:33
Eigen::Tensor::data
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar * data()
Definition: Tensor.h:104
Eigen::Tensor::size
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index size() const
Definition: Tensor.h:103
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
CALL_SUBTEST
#define CALL_SUBTEST(FUNC)
Definition: main.h:399


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:02:07