Classes | Public Member Functions | Static Public Attributes | Protected Member Functions | Static Protected Member Functions | Protected Attributes | Static Protected Attributes | Private Member Functions | Static Private Member Functions | Private Attributes | Static Private Attributes | List of all members
net.sf.geographiclib.Geodesic Class Reference

Classes

class  InverseData
 
class  InverseStartV
 
class  Lambda12V
 
class  LengthsV
 

Public Member Functions

GeodesicData ArcDirect (double lat1, double lon1, double azi1, double a12)
 
GeodesicData ArcDirect (double lat1, double lon1, double azi1, double a12, int outmask)
 
GeodesicLine ArcDirectLine (double lat1, double lon1, double azi1, double a12)
 
GeodesicLine ArcDirectLine (double lat1, double lon1, double azi1, double a12, int caps)
 
GeodesicData Direct (double lat1, double lon1, double azi1, boolean arcmode, double s12_a12, int outmask)
 
GeodesicData Direct (double lat1, double lon1, double azi1, double s12)
 
GeodesicData Direct (double lat1, double lon1, double azi1, double s12, int outmask)
 
GeodesicLine DirectLine (double lat1, double lon1, double azi1, double s12)
 
GeodesicLine DirectLine (double lat1, double lon1, double azi1, double s12, int caps)
 
double EllipsoidArea ()
 
double Flattening ()
 
GeodesicLine GenDirectLine (double lat1, double lon1, double azi1, boolean arcmode, double s12_a12, int caps)
 
 Geodesic (double a, double f)
 
GeodesicData Inverse (double lat1, double lon1, double lat2, double lon2)
 
GeodesicData Inverse (double lat1, double lon1, double lat2, double lon2, int outmask)
 
GeodesicLine InverseLine (double lat1, double lon1, double lat2, double lon2)
 
GeodesicLine InverseLine (double lat1, double lon1, double lat2, double lon2, int caps)
 
GeodesicLine Line (double lat1, double lon1, double azi1)
 
GeodesicLine Line (double lat1, double lon1, double azi1, int caps)
 
double MajorRadius ()
 

Static Public Attributes

static final Geodesic WGS84
 

Protected Member Functions

void A3coeff ()
 
double A3f (double eps)
 
void C3coeff ()
 
void C3f (double eps, double c[])
 
void C4coeff ()
 
void C4f (double eps, double c[])
 

Static Protected Member Functions

static double A1m1f (double eps)
 
static double A2m1f (double eps)
 
static void C1f (double eps, double c[])
 
static void C1pf (double eps, double c[])
 
static void C2f (double eps, double c[])
 
static double SinCosSeries (boolean sinp, double sinx, double cosx, double c[])
 

Protected Attributes

double _a
 

Static Protected Attributes

static final int GEOGRAPHICLIB_GEODESIC_ORDER = 6
 
static final int nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nA3x_ = nA3_
 
static final int nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nC3x_ = (nC3_ * (nC3_ - 1)) / 2
 
static final int nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER
 
static final int nC4x_ = (nC4_ * (nC4_ + 1)) / 2
 
static final double tiny_ = Math.sqrt(GeoMath.min)
 

Private Member Functions

InverseData InverseInt (double lat1, double lon1, double lat2, double lon2, int outmask)
 
InverseStartV InverseStart (double sbet1, double cbet1, double dn1, double sbet2, double cbet2, double dn2, double lam12, double slam12, double clam12, double C1a[], double C2a[])
 
Lambda12V Lambda12 (double sbet1, double cbet1, double dn1, double sbet2, double cbet2, double dn2, double salp1, double calp1, double slam120, double clam120, boolean diffp, double C1a[], double C2a[], double C3a[])
 
LengthsV Lengths (double eps, double sig12, double ssig1, double csig1, double dn1, double ssig2, double csig2, double dn2, double cbet1, double cbet2, int outmask, double C1a[], double C2a[])
 

Static Private Member Functions

static double Astroid (double x, double y)
 

Private Attributes

double _A3x []
 
double _n
 

Static Private Attributes

static final int maxit1_ = 20
 
static final int maxit2_ = maxit1_ + GeoMath.digits + 10
 
static final double tol0_ = GeoMath.epsilon
 
static final double tol1_ = 200 * tol0_
 
static final double tol2_ = Math.sqrt(tol0_)
 
static final double tolb_ = tol0_ * tol2_
 
static final double xthresh_ = 1000 * tol2_
 

Detailed Description

Geodesic calculations.

The shortest path between two points on a ellipsoid at (lat1, lon1) and (lat2, lon2) is called the geodesic. Its length is s12 and the geodesic from point 1 to point 2 has azimuths azi1 and azi2 at the two end points. (The azimuth is the heading measured clockwise from north. azi2 is the "forward" azimuth, i.e., the heading that takes you beyond point 2 not back to point 1.)

Given lat1, lon1, azi1, and s12, we can determine lat2, lon2, and azi2. This is the direct geodesic problem and its solution is given by the function Direct. (If s12 is sufficiently large that the geodesic wraps more than halfway around the earth, there will be another geodesic between the points with a smaller s12.)

Given lat1, lon1, lat2, and lon2, we can determine azi1, azi2, and s12. This is the inverse geodesic problem, whose solution is given by Inverse. Usually, the solution to the inverse problem is unique. In cases where there are multiple solutions (all with the same s12, of course), all the solutions can be easily generated once a particular solution is provided.

The standard way of specifying the direct problem is the specify the distance s12 to the second point. However it is sometimes useful instead to specify the arc length a12 (in degrees) on the auxiliary sphere. This is a mathematical construct used in solving the geodesic problems. The solution of the direct problem in this form is provided by ArcDirect. An arc length in excess of 180° indicates that the geodesic is not a shortest path. In addition, the arc length between an equatorial crossing and the next extremum of latitude for a geodesic is 90°.

This class can also calculate several other quantities related to geodesics. These are:

The quantities m12, M12, M21 which all specify the behavior of nearby geodesics obey addition rules. If points 1, 2, and 3 all lie on a single geodesic, then the following rules hold:

The results of the geodesic calculations are bundled up into a {} object which includes the input parameters and all the computed results, i.e., lat1, lon1, azi1, lat2, lon2, azi2, s12, a12, m12, M12, M21, S12. The functions Direct, ArcDirect, and Inverse include an optional final argument outmask which allows you specify which results should be computed and returned. If you omit outmask, then the "standard" geodesic results are computed (latitudes, longitudes, azimuths, and distance). outmask is bitor'ed combination of {} values. For example, if you wish just to compute the distance between two points you would call, e.g., GeodesicData g = Geodesic.WGS84.Inverse(lat1, lon1, lat2, lon2, GeodesicMask.DISTANCE); <p<blockquote> Additional functionality is provided by the GeodesicLine class, which allows a sequence of points along a geodesic to be computed.

The shortest distance returned by the solution of the inverse problem is (obviously) uniquely defined. However, in a few special cases there are multiple azimuths which yield the same shortest distance. Here is a catalog of those cases:

The calculations are accurate to better than 15 nm (15 nanometers) for the WGS84 ellipsoid. See Sec. 9 of arXiv:1102.1215v1 for details. The algorithms used by this class are based on series expansions using the flattening f as a small parameter. These are only accurate for |f| < 0.02; however reasonably accurate results will be obtained for |f| < 0.2. Here is a table of the approximate maximum error (expressed as a distance) for an ellipsoid with the same equatorial radius as the WGS84 ellipsoid and different values of the flattening.

    |f|      error
    0.01     25 nm
    0.02     30 nm
    0.05     10 um
    0.1     1.5 mm
    0.2     300 mm 

<p<blockquote>

The algorithms are described in

Example of use:

// Solve the direct geodesic problem.
// This program reads in lines with lat1, lon1, azi1, s12 and prints
// out lines with lat2, lon2, azi2 (for the WGS84 ellipsoid).
import java.util.*;
import net.sf.geographiclib.*;
public class Direct {
public static void main(String[] args) {
try {
Scanner in = new Scanner(System.in);
double lat1, lon1, azi1, s12;
while (true) {
lat1 = in.nextDouble(); lon1 = in.nextDouble();
azi1 = in.nextDouble(); s12 = in.nextDouble();
GeodesicData g = Geodesic.WGS84.Direct(lat1, lon1, azi1, s12);
System.out.println(g.lat2 + " " + g.lon2 + " " + g.azi2);
}
}
catch (Exception e) {}
}
}

Definition at line 202 of file Geodesic.java.

Constructor & Destructor Documentation

◆ Geodesic()

net.sf.geographiclib.Geodesic.Geodesic ( double  a,
double  f 
)
inline

Constructor for a ellipsoid with

Parameters
aequatorial radius (meters).
fflattening of ellipsoid. Setting f = 0 gives a sphere. Negative f gives a prolate ellipsoid.
Exceptions
GeographicErrif a or (1 − f ) a is not positive.

Definition at line 250 of file Geodesic.java.

Member Function Documentation

◆ A1m1f()

static double net.sf.geographiclib.Geodesic.A1m1f ( double  eps)
inlinestaticprotected

Definition at line 1676 of file Geodesic.java.

◆ A2m1f()

static double net.sf.geographiclib.Geodesic.A2m1f ( double  eps)
inlinestaticprotected

Definition at line 1743 of file Geodesic.java.

◆ A3coeff()

void net.sf.geographiclib.Geodesic.A3coeff ( )
inlineprotected

Definition at line 1782 of file Geodesic.java.

◆ A3f()

double net.sf.geographiclib.Geodesic.A3f ( double  eps)
inlineprotected

Definition at line 1644 of file Geodesic.java.

◆ ArcDirect() [1/2]

GeodesicData net.sf.geographiclib.Geodesic.ArcDirect ( double  lat1,
double  lon1,
double  azi1,
double  a12 
)
inline

Solve the direct geodesic problem where the length of the geodesic is specified in terms of arc length.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
a12arc length between point 1 and point 2 (degrees); it can be negative.
Returns
a GeodesicData object with the following fields: lat1, lon1, azi1, lat2, lon2, azi2, s12, a12.

lat1 should be in the range [−90°, 90°]. The values of lon2 and azi2 returned are in the range [−180°, 180°].

If either point is at a pole, the azimuth is defined by keeping the longitude fixed, writing lat = ±(90° − ε), and taking the limit ε → 0+. An arc length greater that 180° signifies a geodesic which is not a shortest path. (For a prolate ellipsoid, an additional condition is necessary for a shortest path: the longitudinal extent must not exceed of 180°.)

Definition at line 366 of file Geodesic.java.

◆ ArcDirect() [2/2]

GeodesicData net.sf.geographiclib.Geodesic.ArcDirect ( double  lat1,
double  lon1,
double  azi1,
double  a12,
int  outmask 
)
inline

Solve the direct geodesic problem where the length of the geodesic is specified in terms of arc length and with a subset of the geodesic results returned.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
a12arc length between point 1 and point 2 (degrees); it can be negative.
outmaska bitor'ed combination of GeodesicMask values specifying which results should be returned.
Returns
a GeodesicData object with the fields specified by outmask computed.

lat1, lon1, azi1, and a12 are always included in the returned result. The value of lon2 returned is in the range [−180°, 180°], unless the outmask includes the {} flag.

Definition at line 391 of file Geodesic.java.

◆ ArcDirectLine() [1/2]

GeodesicLine net.sf.geographiclib.Geodesic.ArcDirectLine ( double  lat1,
double  lon1,
double  azi1,
double  a12 
)
inline

Define a GeodesicLine in terms of the direct geodesic problem specified in terms of arc length with all capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
a12arc length between point 1 and point 2 (degrees); it can be negative.
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the direct geodesic problem.

lat1 should be in the range [−90°, 90°].

Definition at line 523 of file Geodesic.java.

◆ ArcDirectLine() [2/2]

GeodesicLine net.sf.geographiclib.Geodesic.ArcDirectLine ( double  lat1,
double  lon1,
double  azi1,
double  a12,
int  caps 
)
inline

Define a GeodesicLine in terms of the direct geodesic problem specified in terms of arc length with a subset of the capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
a12arc length between point 1 and point 2 (degrees); it can be negative.
capsbitor'ed combination of GeodesicMask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to GeodesicLine.Position.
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the direct geodesic problem.

lat1 should be in the range [−90°, 90°].

Definition at line 549 of file Geodesic.java.

◆ Astroid()

static double net.sf.geographiclib.Geodesic.Astroid ( double  x,
double  y 
)
inlinestaticprivate

Definition at line 1324 of file Geodesic.java.

◆ C1f()

static void net.sf.geographiclib.Geodesic.C1f ( double  eps,
double  c[] 
)
inlinestaticprotected

Definition at line 1687 of file Geodesic.java.

◆ C1pf()

static void net.sf.geographiclib.Geodesic.C1pf ( double  eps,
double  c[] 
)
inlinestaticprotected

Definition at line 1715 of file Geodesic.java.

◆ C2f()

static void net.sf.geographiclib.Geodesic.C2f ( double  eps,
double  c[] 
)
inlinestaticprotected

Definition at line 1754 of file Geodesic.java.

◆ C3coeff()

void net.sf.geographiclib.Geodesic.C3coeff ( )
inlineprotected

Definition at line 1806 of file Geodesic.java.

◆ C3f()

void net.sf.geographiclib.Geodesic.C3f ( double  eps,
double  c[] 
)
inlineprotected

Definition at line 1649 of file Geodesic.java.

◆ C4coeff()

void net.sf.geographiclib.Geodesic.C4coeff ( )
inlineprotected

Definition at line 1849 of file Geodesic.java.

◆ C4f()

void net.sf.geographiclib.Geodesic.C4f ( double  eps,
double  c[] 
)
inlineprotected

Definition at line 1662 of file Geodesic.java.

◆ Direct() [1/3]

GeodesicData net.sf.geographiclib.Geodesic.Direct ( double  lat1,
double  lon1,
double  azi1,
boolean  arcmode,
double  s12_a12,
int  outmask 
)
inline

The general direct geodesic problem. Direct and ArcDirect are defined in terms of this function.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
arcmodeboolean flag determining the meaning of the s12_a12.
s12_a12if arcmode is false, this is the distance between point 1 and point 2 (meters); otherwise it is the arc length between point 1 and point 2 (degrees); it can be negative.
outmaska bitor'ed combination of GeodesicMask values specifying which results should be returned.
Returns
a GeodesicData object with the fields specified by outmask computed.

The GeodesicMask values possible for outmask are

The function value a12 is always computed and returned and this equals s12_a12 is arcmode is true. If outmask includes GeodesicMask#DISTANCE and arcmode is false, then s12 = s12_a12. It is not necessary to include {} in outmask; this is automatically included is arcmode is false.

Definition at line 452 of file Geodesic.java.

◆ Direct() [2/3]

GeodesicData net.sf.geographiclib.Geodesic.Direct ( double  lat1,
double  lon1,
double  azi1,
double  s12 
)
inline

Solve the direct geodesic problem where the length of the geodesic is specified in terms of distance.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
s12distance between point 1 and point 2 (meters); it can be negative.
Returns
a GeodesicData object with the following fields: lat1, lon1, azi1, lat2, lon2, azi2, s12, a12.

lat1 should be in the range [−90°, 90°]. The values of lon2 and azi2 returned are in the range [−180°, 180°].

If either point is at a pole, the azimuth is defined by keeping the longitude fixed, writing lat = ±(90° − ε), and taking the limit ε → 0+. An arc length greater that 180° signifies a geodesic which is not a shortest path. (For a prolate ellipsoid, an additional condition is necessary for a shortest path: the longitudinal extent must not exceed of 180°.)

Definition at line 313 of file Geodesic.java.

◆ Direct() [3/3]

GeodesicData net.sf.geographiclib.Geodesic.Direct ( double  lat1,
double  lon1,
double  azi1,
double  s12,
int  outmask 
)
inline

Solve the direct geodesic problem where the length of the geodesic is specified in terms of distance and with a subset of the geodesic results returned.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
s12distance between point 1 and point 2 (meters); it can be negative.
outmaska bitor'ed combination of GeodesicMask values specifying which results should be returned.
Returns
a GeodesicData object with the fields specified by outmask computed.

lat1, lon1, azi1, s12, and a12 are always included in the returned result. The value of lon2 returned is in the range [−180°, 180°], unless the outmask includes the GeodesicMask#LONG_UNROLL flag.

Definition at line 337 of file Geodesic.java.

◆ DirectLine() [1/2]

GeodesicLine net.sf.geographiclib.Geodesic.DirectLine ( double  lat1,
double  lon1,
double  azi1,
double  s12 
)
inline

Define a GeodesicLine in terms of the direct geodesic problem specified in terms of distance with all capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
s12distance between point 1 and point 2 (meters); it can be negative.
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the direct geodesic problem.

lat1 should be in the range [−90°, 90°].

Definition at line 477 of file Geodesic.java.

◆ DirectLine() [2/2]

GeodesicLine net.sf.geographiclib.Geodesic.DirectLine ( double  lat1,
double  lon1,
double  azi1,
double  s12,
int  caps 
)
inline

Define a GeodesicLine in terms of the direct geodesic problem specified in terms of distance with a subset of the capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
s12distance between point 1 and point 2 (meters); it can be negative.
capsbitor'ed combination of GeodesicMask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to GeodesicLine.Position.
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the direct geodesic problem.

lat1 should be in the range [−90°, 90°].

Definition at line 502 of file Geodesic.java.

◆ EllipsoidArea()

double net.sf.geographiclib.Geodesic.EllipsoidArea ( )
inline
Returns
total area of ellipsoid in meters2. The area of a polygon encircling a pole can be found by adding EllipsoidArea()/2 to the sum of S12 for each side of the polygon.

Definition at line 1201 of file Geodesic.java.

◆ Flattening()

double net.sf.geographiclib.Geodesic.Flattening ( )
inline
Returns
f the flattening of the ellipsoid. This is the value used in the constructor.

Definition at line 1194 of file Geodesic.java.

◆ GenDirectLine()

GeodesicLine net.sf.geographiclib.Geodesic.GenDirectLine ( double  lat1,
double  lon1,
double  azi1,
boolean  arcmode,
double  s12_a12,
int  caps 
)
inline

Define a GeodesicLine in terms of the direct geodesic problem specified in terms of either distance or arc length with a subset of the capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
arcmodeboolean flag determining the meaning of the s12_a12.
s12_a12if arcmode is false, this is the distance between point 1 and point 2 (meters); otherwise it is the arc length between point 1 and point 2 (degrees); it can be negative.
capsbitor'ed combination of GeodesicMask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to GeodesicLine.Position.
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the direct geodesic problem.

lat1 should be in the range [−90°, 90°].

Definition at line 577 of file Geodesic.java.

◆ Inverse() [1/2]

GeodesicData net.sf.geographiclib.Geodesic.Inverse ( double  lat1,
double  lon1,
double  lat2,
double  lon2 
)
inline

Solve the inverse geodesic problem.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
lat2latitude of point 2 (degrees).
lon2longitude of point 2 (degrees).
Returns
a GeodesicData object with the following fields: lat1, lon1, azi1, lat2, lon2, azi2, s12, a12.

lat1 and lat2 should be in the range [−90°, 90°]. The values of azi1 and azi2 returned are in the range [−180°, 180°].

If either point is at a pole, the azimuth is defined by keeping the longitude fixed, writing lat = ±(90° − ε), taking the limit ε → 0+.

The solution to the inverse problem is found using Newton's method. If this fails to converge (this is very unlikely in geodetic applications but does occur for very eccentric ellipsoids), then the bisection method is used to refine the solution.

Definition at line 615 of file Geodesic.java.

◆ Inverse() [2/2]

GeodesicData net.sf.geographiclib.Geodesic.Inverse ( double  lat1,
double  lon1,
double  lat2,
double  lon2,
int  outmask 
)
inline

Solve the inverse geodesic problem with a subset of the geodesic results returned.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
lat2latitude of point 2 (degrees).
lon2longitude of point 2 (degrees).
outmaska bitor'ed combination of GeodesicMask values specifying which results should be returned.
Returns
a GeodesicData object with the fields specified by outmask computed.

The GeodesicMask values possible for outmask are

lat1, lon1, lat2, lon2, and a12 are always included in the returned result.

Definition at line 1049 of file Geodesic.java.

◆ InverseInt()

InverseData net.sf.geographiclib.Geodesic.InverseInt ( double  lat1,
double  lon1,
double  lat2,
double  lon2,
int  outmask 
)
inlineprivate

Definition at line 629 of file Geodesic.java.

◆ InverseLine() [1/2]

GeodesicLine net.sf.geographiclib.Geodesic.InverseLine ( double  lat1,
double  lon1,
double  lat2,
double  lon2 
)
inline

Define a GeodesicLine in terms of the inverse geodesic problem with all capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
lat2latitude of point 2 (degrees).
lon2longitude of point 2 (degrees).
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the inverse geodesic problem.

lat1 and lat2 should be in the range [−90°, 90°].

Definition at line 1077 of file Geodesic.java.

◆ InverseLine() [2/2]

GeodesicLine net.sf.geographiclib.Geodesic.InverseLine ( double  lat1,
double  lon1,
double  lat2,
double  lon2,
int  caps 
)
inline

Define a GeodesicLine in terms of the inverse geodesic problem with a subset of the capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
lat2latitude of point 2 (degrees).
lon2longitude of point 2 (degrees).
capsbitor'ed combination of GeodesicMask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to GeodesicLine.Position.
Returns
a GeodesicLine object.

This function sets point 3 of the GeodesicLine to correspond to point 2 of the inverse geodesic problem.

lat1 and lat2 should be in the range [−90°, 90°].

Definition at line 1102 of file Geodesic.java.

◆ InverseStart()

InverseStartV net.sf.geographiclib.Geodesic.InverseStart ( double  sbet1,
double  cbet1,
double  dn1,
double  sbet2,
double  cbet2,
double  dn2,
double  lam12,
double  slam12,
double  clam12,
double  C1a[],
double  C2a[] 
)
inlineprivate

Definition at line 1387 of file Geodesic.java.

◆ Lambda12()

Lambda12V net.sf.geographiclib.Geodesic.Lambda12 ( double  sbet1,
double  cbet1,
double  dn1,
double  sbet2,
double  cbet2,
double  dn2,
double  salp1,
double  calp1,
double  slam120,
double  clam120,
boolean  diffp,
double  C1a[],
double  C2a[],
double  C3a[] 
)
inlineprivate

Definition at line 1556 of file Geodesic.java.

◆ Lengths()

LengthsV net.sf.geographiclib.Geodesic.Lengths ( double  eps,
double  sig12,
double  ssig1,
double  csig1,
double  dn1,
double  ssig2,
double  csig2,
double  dn2,
double  cbet1,
double  cbet2,
int  outmask,
double  C1a[],
double  C2a[] 
)
inlineprivate

Definition at line 1262 of file Geodesic.java.

◆ Line() [1/2]

GeodesicLine net.sf.geographiclib.Geodesic.Line ( double  lat1,
double  lon1,
double  azi1 
)
inline

Set up to compute several points on a single geodesic with all capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
Returns
a GeodesicLine object.

lat1 should be in the range [−90°, 90°]. The full set of capabilities is included.

If the point is at a pole, the azimuth is defined by keeping the lon1 fixed, writing lat1 = ±(90 − ε), taking the limit ε → 0+.

Definition at line 1130 of file Geodesic.java.

◆ Line() [2/2]

GeodesicLine net.sf.geographiclib.Geodesic.Line ( double  lat1,
double  lon1,
double  azi1,
int  caps 
)
inline

Set up to compute several points on a single geodesic with a subset of the capabilities included.

Parameters
lat1latitude of point 1 (degrees).
lon1longitude of point 1 (degrees).
azi1azimuth at point 1 (degrees).
capsbitor'ed combination of GeodesicMask values specifying the capabilities the GeodesicLine object should possess, i.e., which quantities can be returned in calls to {GeodesicLine.Position}. a GeodesicLine} object. The GeodesicMask values are

If the point is at a pole, the azimuth is defined by keeping lon1 fixed, writing lat1 = ±(90 − ε), and taking the limit ε → 0+.

Definition at line 1180 of file Geodesic.java.

◆ MajorRadius()

double net.sf.geographiclib.Geodesic.MajorRadius ( )
inline
Returns
a the equatorial radius of the ellipsoid (meters). This is the value used in the constructor.

Definition at line 1188 of file Geodesic.java.

◆ SinCosSeries()

static double net.sf.geographiclib.Geodesic.SinCosSeries ( boolean  sinp,
double  sinx,
double  cosx,
double  c[] 
)
inlinestaticprotected

Definition at line 1229 of file Geodesic.java.

Member Data Documentation

◆ _a

double net.sf.geographiclib.Geodesic._a
protected

Definition at line 237 of file Geodesic.java.

◆ _A3x

double net.sf.geographiclib.Geodesic._A3x[]
private

Definition at line 239 of file Geodesic.java.

◆ _n

double net.sf.geographiclib.Geodesic._n
private

Definition at line 238 of file Geodesic.java.

◆ GEOGRAPHICLIB_GEODESIC_ORDER

final int net.sf.geographiclib.Geodesic.GEOGRAPHICLIB_GEODESIC_ORDER = 6
staticprotected

The order of the expansions used by Geodesic.

Definition at line 207 of file Geodesic.java.

◆ maxit1_

final int net.sf.geographiclib.Geodesic.maxit1_ = 20
staticprivate

Definition at line 220 of file Geodesic.java.

◆ maxit2_

final int net.sf.geographiclib.Geodesic.maxit2_ = maxit1_ + GeoMath.digits + 10
staticprivate

Definition at line 221 of file Geodesic.java.

◆ nA1_

final int net.sf.geographiclib.Geodesic.nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 209 of file Geodesic.java.

◆ nA2_

final int net.sf.geographiclib.Geodesic.nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 212 of file Geodesic.java.

◆ nA3_

final int net.sf.geographiclib.Geodesic.nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 214 of file Geodesic.java.

◆ nA3x_

final int net.sf.geographiclib.Geodesic.nA3x_ = nA3_
staticprotected

Definition at line 215 of file Geodesic.java.

◆ nC1_

final int net.sf.geographiclib.Geodesic.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 210 of file Geodesic.java.

◆ nC1p_

final int net.sf.geographiclib.Geodesic.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 211 of file Geodesic.java.

◆ nC2_

final int net.sf.geographiclib.Geodesic.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 213 of file Geodesic.java.

◆ nC3_

final int net.sf.geographiclib.Geodesic.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 216 of file Geodesic.java.

◆ nC3x_

final int net.sf.geographiclib.Geodesic.nC3x_ = (nC3_ * (nC3_ - 1)) / 2
staticprotected

Definition at line 217 of file Geodesic.java.

◆ nC4_

final int net.sf.geographiclib.Geodesic.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER
staticprotected

Definition at line 218 of file Geodesic.java.

◆ nC4x_

final int net.sf.geographiclib.Geodesic.nC4x_ = (nC4_ * (nC4_ + 1)) / 2
staticprotected

Definition at line 219 of file Geodesic.java.

◆ tiny_

final double net.sf.geographiclib.Geodesic.tiny_ = Math.sqrt(GeoMath.min)
staticprotected

Definition at line 226 of file Geodesic.java.

◆ tol0_

final double net.sf.geographiclib.Geodesic.tol0_ = GeoMath.epsilon
staticprivate

Definition at line 227 of file Geodesic.java.

◆ tol1_

final double net.sf.geographiclib.Geodesic.tol1_ = 200 * tol0_
staticprivate

Definition at line 231 of file Geodesic.java.

◆ tol2_

final double net.sf.geographiclib.Geodesic.tol2_ = Math.sqrt(tol0_)
staticprivate

Definition at line 232 of file Geodesic.java.

◆ tolb_

final double net.sf.geographiclib.Geodesic.tolb_ = tol0_ * tol2_
staticprivate

Definition at line 234 of file Geodesic.java.

◆ WGS84

final Geodesic net.sf.geographiclib.Geodesic.WGS84
static
Initial value:
=
new Geodesic(Constants.WGS84_a, Constants.WGS84_f)

A global instantiation of Geodesic with the parameters for the WGS84 ellipsoid.

Definition at line 1207 of file Geodesic.java.

◆ xthresh_

final double net.sf.geographiclib.Geodesic.xthresh_ = 1000 * tol2_
staticprivate

Definition at line 235 of file Geodesic.java.


The documentation for this class was generated from the following file:
e
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Direct
Definition: Direct.java:7
net.sf
main
int main(int argc, char **argv)
Definition: cmake/example_cmake_find_gtsam/main.cpp:63
net
net.sf.geographiclib
Definition: Accumulator.java:8
g
void g(const string &key, int i)
Definition: testBTree.cpp:41
args
Definition: pytypes.h:2210
net.sf.geographiclib.Geodesic.Geodesic
Geodesic(double a, double f)
Definition: Geodesic.java:250


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:16:28