Public Types | List of all members
gtsam::GaussianConditional Class Reference

#include <GaussianConditional.h>

Inheritance diagram for gtsam::GaussianConditional:
Inheritance graph
[legend]

Public Types

typedef Conditional< BaseFactor, ThisBaseConditional
 Typedef to our conditional base class. More...
 
typedef JacobianFactor BaseFactor
 Typedef to our factor base class. More...
 
typedef std::shared_ptr< Thisshared_ptr
 shared_ptr to this class More...
 
typedef GaussianConditional This
 Typedef to this class. More...
 
- Public Types inherited from gtsam::JacobianFactor
typedef VerticalBlockMatrix::Block ABlock
 
typedef GaussianFactor Base
 Typedef to base class. More...
 
typedef ABlock::ColXpr BVector
 
typedef VerticalBlockMatrix::constBlock constABlock
 
typedef constABlock::ConstColXpr constBVector
 
typedef std::shared_ptr< Thisshared_ptr
 shared_ptr to this class More...
 
typedef JacobianFactor This
 Typedef to this class. More...
 
- Public Types inherited from gtsam::GaussianFactor
typedef Factor Base
 Our base class. More...
 
typedef std::shared_ptr< Thisshared_ptr
 shared_ptr to this class More...
 
typedef GaussianFactor This
 This class. More...
 
- Public Types inherited from gtsam::Factor
typedef KeyVector::const_iterator const_iterator
 Const iterator over keys. More...
 
typedef KeyVector::iterator iterator
 Iterator over keys. More...
 
- Public Types inherited from gtsam::Conditional< JacobianFactor, GaussianConditional >
typedef std::pair< typename JacobianFactor ::const_iterator, typename JacobianFactor ::const_iterator > ConstFactorRange
 
typedef ConstFactorRangeIterator Frontals
 
typedef ConstFactorRangeIterator Parents
 

Public Member Functions

Testable
void print (const std::string &="GaussianConditional", const KeyFormatter &formatter=DefaultKeyFormatter) const override
 
bool equals (const GaussianFactor &cg, double tol=1e-9) const override
 
Standard Interface
double negLogConstant () const override
 Return the negative log of the normalization constant. More...
 
double logProbability (const VectorValues &x) const
 
double evaluate (const VectorValues &x) const
 
double operator() (const VectorValues &x) const
 Evaluate probability density, sugar. More...
 
VectorValues solve (const VectorValues &parents) const
 
VectorValues solveOtherRHS (const VectorValues &parents, const VectorValues &rhs) const
 
void solveTransposeInPlace (VectorValues &gy) const
 
JacobianFactor::shared_ptr likelihood (const VectorValues &frontalValues) const
 
JacobianFactor::shared_ptr likelihood (const Vector &frontal) const
 
VectorValues sample (std::mt19937_64 *rng) const
 
VectorValues sample (const VectorValues &parentsValues, std::mt19937_64 *rng) const
 
VectorValues sample () const
 Sample, use default rng. More...
 
VectorValues sample (const VectorValues &parentsValues) const
 Sample with given values, use default rng. More...
 
Linear algebra.
constABlock R () const
 
constABlock S () const
 
constABlock S (const_iterator it) const
 
const constBVector d () const
 
double determinant () const
 Compute the determinant of the R matrix. More...
 
double logDeterminant () const
 Compute the log determinant of the R matrix. More...
 
HybridValues methods.
double logProbability (const HybridValues &x) const override
 
double evaluate (const HybridValues &x) const override
 
double error (const VectorValues &c) const override
 
- Public Member Functions inherited from gtsam::JacobianFactor
Matrix augmentedInformation () const override
 
Matrix augmentedJacobian () const override
 
Matrix augmentedJacobianUnweighted () const
 
GaussianFactor::shared_ptr clone () const override
 
size_t cols () const
 
std::pair< std::shared_ptr< GaussianConditional >, shared_ptreliminate (const Ordering &keys)
 
bool equals (const GaussianFactor &lf, double tol=1e-9) const override
 assert equality up to a tolerance More...
 
double error (const HybridValues &c) const override
 
virtual double error (const VectorValues &c) const
 
double error (const VectorValues &c) const override
 
Vector error_vector (const VectorValues &c) const
 
SharedDiagonalget_model ()
 
const SharedDiagonalget_model () const
 
ABlock getA ()
 
constABlock getA () const
 
ABlock getA (const Key &key)
 
constABlock getA (const_iterator variable) const
 
ABlock getA (iterator variable)
 
BVector getb ()
 
const constBVector getb () const
 
DenseIndex getDim (const_iterator variable) const override
 
Vector gradient (Key key, const VectorValues &x) const override
 Compute the gradient wrt a key at any values. More...
 
VectorValues gradientAtZero () const override
 A'*b for Jacobian. More...
 
void gradientAtZero (double *d) const override
 A'*b for Jacobian (raw memory version) More...
 
std::map< Key, MatrixhessianBlockDiagonal () const override
 Return the block diagonal of the Hessian for this factor. More...
 
void hessianDiagonal (double *d) const override
 Raw memory access version of hessianDiagonal. More...
 
void hessianDiagonalAdd (VectorValues &d) const override
 Add the current diagonal to a VectorValues instance. More...
 
Matrix information () const override
 
bool isConstrained () const
 
std::pair< Matrix, Vectorjacobian () const override
 Returns (dense) A,b pair associated with factor, bakes in the weights. More...
 
 JacobianFactor ()
 
 JacobianFactor (const GaussianFactor &gf)
 
 JacobianFactor (const GaussianFactorGraph &graph)
 
 JacobianFactor (const GaussianFactorGraph &graph, const Ordering &ordering)
 
 JacobianFactor (const GaussianFactorGraph &graph, const Ordering &ordering, const VariableSlots &p_variableSlots)
 
 JacobianFactor (const GaussianFactorGraph &graph, const VariableSlots &p_variableSlots)
 
 JacobianFactor (const HessianFactor &hf)
 
 JacobianFactor (const JacobianFactor &jf)
 
template<typename KEYS >
 JacobianFactor (const KEYS &keys, const VerticalBlockMatrix &augmentedMatrix, const SharedDiagonal &sigmas=SharedDiagonal())
 
template<typename TERMS >
 JacobianFactor (const TERMS &terms, const Vector &b, const SharedDiagonal &model=SharedDiagonal())
 
 JacobianFactor (const Vector &b_in)
 
 JacobianFactor (Key i1, const Matrix &A1, const Vector &b, const SharedDiagonal &model=SharedDiagonal())
 
 JacobianFactor (Key i1, const Matrix &A1, Key i2, const Matrix &A2, const Vector &b, const SharedDiagonal &model=SharedDiagonal())
 
 JacobianFactor (Key i1, const Matrix &A1, Key i2, const Matrix &A2, Key i3, const Matrix &A3, const Vector &b, const SharedDiagonal &model=SharedDiagonal())
 
std::pair< Matrix, VectorjacobianUnweighted () const
 Returns (dense) A,b pair associated with factor, does not bake in weights. More...
 
VerticalBlockMatrixmatrixObject ()
 
const VerticalBlockMatrixmatrixObject () const
 
void multiplyHessianAdd (double alpha, const double *x, double *y, const std::vector< size_t > &accumulatedDims) const
 
void multiplyHessianAdd (double alpha, const VectorValues &x, VectorValues &y) const override
 
GaussianFactor::shared_ptr negate () const override
 
Vector operator* (const VectorValues &x) const
 
JacobianFactoroperator= (const JacobianFactor &jf)=default
 
void print (const std::string &s="", const KeyFormatter &formatter=DefaultKeyFormatter) const override
 print with optional string More...
 
size_t rows () const
 
void setModel (bool anyConstrained, const Vector &sigmas)
 
std::shared_ptr< GaussianConditionalsplitConditional (size_t nrFrontals)
 
void transposeMultiplyAdd (double alpha, const Vector &e, VectorValues &x) const
 
Vector unweighted_error (const VectorValues &c) const
 
void updateHessian (const KeyVector &keys, SymmetricBlockMatrix *info) const override
 
JacobianFactor whiten () const
 
 ~JacobianFactor () override
 
- Public Member Functions inherited from gtsam::GaussianFactor
 GaussianFactor ()
 
template<typename CONTAINER >
 GaussianFactor (const CONTAINER &keys)
 
double error (const HybridValues &c) const override
 
VectorValues hessianDiagonal () const
 Return the diagonal of the Hessian for this factor. More...
 
- Public Member Functions inherited from gtsam::Factor
virtual ~Factor ()=default
 Default destructor. More...
 
bool empty () const
 Whether the factor is empty (involves zero variables). More...
 
Key front () const
 First key. More...
 
Key back () const
 Last key. More...
 
const_iterator find (Key key) const
 find More...
 
const KeyVectorkeys () const
 Access the factor's involved variable keys. More...
 
const_iterator begin () const
 
const_iterator end () const
 
size_t size () const
 
virtual void printKeys (const std::string &s="Factor", const KeyFormatter &formatter=DefaultKeyFormatter) const
 print only keys More...
 
bool equals (const This &other, double tol=1e-9) const
 check equality More...
 
KeyVectorkeys ()
 
iterator begin ()
 
iterator end ()
 
- Public Member Functions inherited from gtsam::Conditional< JacobianFactor, GaussianConditional >
void print (const std::string &s="Conditional", const KeyFormatter &formatter=DefaultKeyFormatter) const
 
bool equals (const This &c, double tol=1e-9) const
 
virtual ~Conditional ()
 
size_t nrFrontals () const
 
size_t nrParents () const
 
Key firstFrontalKey () const
 
Frontals frontals () const
 
Parents parents () const
 
double operator() (const HybridValues &x) const
 Evaluate probability density, sugar. More...
 
virtual double negLogConstant () const
 All conditional types need to implement this as the negative log of the normalization constant to make it such that error>=0. More...
 
size_tnrFrontals ()
 
JacobianFactor ::const_iterator beginFrontals () const
 
JacobianFactor ::iterator beginFrontals ()
 
JacobianFactor ::const_iterator endFrontals () const
 
JacobianFactor ::iterator endFrontals ()
 
JacobianFactor ::const_iterator beginParents () const
 
JacobianFactor ::iterator beginParents ()
 
JacobianFactor ::const_iterator endParents () const
 
JacobianFactor ::iterator endParents ()
 

Constructors

 GaussianConditional ()
 
 GaussianConditional (Key key, const Vector &d, const Matrix &R, const SharedDiagonal &sigmas=SharedDiagonal())
 
 GaussianConditional (Key key, const Vector &d, const Matrix &R, Key parent1, const Matrix &S, const SharedDiagonal &sigmas=SharedDiagonal())
 
 GaussianConditional (Key key, const Vector &d, const Matrix &R, Key parent1, const Matrix &S, Key parent2, const Matrix &T, const SharedDiagonal &sigmas=SharedDiagonal())
 
template<typename TERMS >
 GaussianConditional (const TERMS &terms, size_t nrFrontals, const Vector &d, const SharedDiagonal &sigmas=SharedDiagonal())
 
template<typename KEYS >
 GaussianConditional (const KEYS &keys, size_t nrFrontals, const VerticalBlockMatrix &augmentedMatrix, const SharedDiagonal &sigmas=SharedDiagonal())
 
static GaussianConditional FromMeanAndStddev (Key key, const Vector &mu, double sigma)
 Construct from mean mu and standard deviation sigma. More...
 
static GaussianConditional FromMeanAndStddev (Key key, const Matrix &A, Key parent, const Vector &b, double sigma)
 Construct from conditional mean A1 p1 + b and standard deviation. More...
 
static GaussianConditional FromMeanAndStddev (Key key, const Matrix &A1, Key parent1, const Matrix &A2, Key parent2, const Vector &b, double sigma)
 
template<typename... Args>
static shared_ptr sharedMeanAndStddev (Args &&... args)
 Create shared pointer by forwarding arguments to fromMeanAndStddev. More...
 
template<typename ITERATOR >
static shared_ptr Combine (ITERATOR firstConditional, ITERATOR lastConditional)
 

Additional Inherited Members

- Static Public Member Functions inherited from gtsam::GaussianFactor
template<typename CONTAINER >
static DenseIndex Slot (const CONTAINER &keys, Key key)
 
- Static Public Member Functions inherited from gtsam::Conditional< JacobianFactor, GaussianConditional >
static bool CheckInvariants (const GaussianConditional &conditional, const VALUES &x)
 
- Protected Member Functions inherited from gtsam::JacobianFactor
template<typename TERMS >
void fillTerms (const TERMS &terms, const Vector &b, const SharedDiagonal &noiseModel)
 Internal function to fill blocks and set dimensions. More...
 
- Protected Member Functions inherited from gtsam::Factor
 Factor ()
 
template<typename CONTAINER >
 Factor (const CONTAINER &keys)
 
template<typename ITERATOR >
 Factor (ITERATOR first, ITERATOR last)
 
- Protected Member Functions inherited from gtsam::Conditional< JacobianFactor, GaussianConditional >
 Conditional ()
 
 Conditional (size_t nrFrontals)
 
- Static Protected Member Functions inherited from gtsam::Factor
template<typename CONTAINER >
static Factor FromKeys (const CONTAINER &keys)
 
template<typename ITERATOR >
static Factor FromIterators (ITERATOR first, ITERATOR last)
 
- Protected Attributes inherited from gtsam::JacobianFactor
VerticalBlockMatrix Ab_
 
noiseModel::Diagonal::shared_ptr model_
 
- Protected Attributes inherited from gtsam::Factor
KeyVector keys_
 The keys involved in this factor. More...
 
- Protected Attributes inherited from gtsam::Conditional< JacobianFactor, GaussianConditional >
size_t nrFrontals_
 

Detailed Description

A GaussianConditional functions as the node in a Bayes network. It has a set of parents y,z, etc. and implements a Gaussian probability density p(x | y, z) on x. The negative log-density is given by $ \frac{1}{2} |Rx - (d - Sy - Tz - ...)|^2 $ The mean of the conditional density is $ R^{-1}(d - Sy - Tz - ...) $. The covariance of the conditional density is given by the noise model and is constrained to be diagonal.

This is the base class for all conditional distributions/densities, which are implemented as specialized factors. This class does not store any data other than its keys. Derived classes store data such as matrices and probability tables.

The evaluate method is used to evaluate the factor, and together with logProbability is the main methods that need to be implemented in derived classes. These two methods relate to the error method in the factor by: probability(x) = k exp(-error(x)) where k is a normalization constant making \int probability(x) = \int k exp(-error(x)) == 1.0, and logProbability(x) = -(K + error(x)) i.e., K = -log(k). The normalization constant k is assumed to not depend on any argument, only (possibly) on the conditional parameters. This class provides a default negative log normalization constant negLogConstant() == 0.0.

There are four broad classes of conditionals that derive from Conditional:

Definition at line 40 of file GaussianConditional.h.

Member Typedef Documentation

◆ BaseConditional

Typedef to our conditional base class.

Definition at line 48 of file GaussianConditional.h.

◆ BaseFactor

Typedef to our factor base class.

Definition at line 47 of file GaussianConditional.h.

◆ shared_ptr

typedef std::shared_ptr<This> gtsam::GaussianConditional::shared_ptr

shared_ptr to this class

Definition at line 46 of file GaussianConditional.h.

◆ This

Typedef to this class.

Definition at line 45 of file GaussianConditional.h.

Constructor & Destructor Documentation

◆ GaussianConditional() [1/6]

gtsam::GaussianConditional::GaussianConditional ( )
inline

default constructor needed for serialization

Definition at line 54 of file GaussianConditional.h.

◆ GaussianConditional() [2/6]

GaussianConditional::GaussianConditional ( Key  key,
const Vector d,
const Matrix R,
const SharedDiagonal sigmas = SharedDiagonal() 
)

constructor with no parents |Rx-d|

Definition at line 45 of file GaussianConditional.cpp.

◆ GaussianConditional() [3/6]

GaussianConditional::GaussianConditional ( Key  key,
const Vector d,
const Matrix R,
Key  parent1,
const Matrix S,
const SharedDiagonal sigmas = SharedDiagonal() 
)

constructor with only one parent |Rx+Sy-d|

Definition at line 50 of file GaussianConditional.cpp.

◆ GaussianConditional() [4/6]

GaussianConditional::GaussianConditional ( Key  key,
const Vector d,
const Matrix R,
Key  parent1,
const Matrix S,
Key  parent2,
const Matrix T,
const SharedDiagonal sigmas = SharedDiagonal() 
)

constructor with two parents |Rx+Sy+Tz-d|

Definition at line 57 of file GaussianConditional.cpp.

◆ GaussianConditional() [5/6]

template<typename TERMS >
GaussianConditional::GaussianConditional ( const TERMS &  terms,
size_t  nrFrontals,
const Vector d,
const SharedDiagonal sigmas = SharedDiagonal() 
)

Constructor with arbitrary number of frontals and parents.

Template Parameters
TERMSA container whose value type is std::pair<Key, Matrix>, specifying the collection of keys and matrices making up the conditional.

Definition at line 26 of file GaussianConditional-inl.h.

◆ GaussianConditional() [6/6]

template<typename KEYS >
GaussianConditional::GaussianConditional ( const KEYS &  keys,
size_t  nrFrontals,
const VerticalBlockMatrix augmentedMatrix,
const SharedDiagonal sigmas = SharedDiagonal() 
)

Constructor with arbitrary number keys, and where the augmented matrix is given all together instead of in block terms. Note that only the active view of the provided augmented matrix is used, and that the matrix data is copied into a newly-allocated matrix in the constructed factor.

Definition at line 32 of file GaussianConditional-inl.h.

Member Function Documentation

◆ Combine()

template<typename ITERATOR >
static shared_ptr gtsam::GaussianConditional::Combine ( ITERATOR  firstConditional,
ITERATOR  lastConditional 
)
static

Combine several GaussianConditional into a single dense GC. The conditionals enumerated by first and last must be in increasing order, meaning that the parents of any conditional may not include a conditional coming before it.

Parameters
firstConditionalIterator to the first conditional to combine, must dereference to a shared_ptr<GaussianConditional>.
lastConditionalIterator to after the last conditional to combine, must dereference to a shared_ptr<GaussianConditional>.

◆ d()

const constBVector gtsam::GaussianConditional::d ( ) const
inline

Get a view of the r.h.s. vector d

Definition at line 231 of file GaussianConditional.h.

◆ determinant()

double gtsam::GaussianConditional::determinant ( ) const
inline

Compute the determinant of the R matrix.

The determinant is computed in log form using logDeterminant for numerical stability and then exponentiated.

Note, the covariance matrix $ \Sigma = (R^T R)^{-1} $, and hence $ \det(\Sigma) = 1 / \det(R^T R) = 1 / determinant()^ 2 $.

Returns
double

Definition at line 244 of file GaussianConditional.h.

◆ equals()

bool GaussianConditional::equals ( const GaussianFactor cg,
double  tol = 1e-9 
) const
overridevirtual

equals function

Implements gtsam::GaussianFactor.

Definition at line 132 of file GaussianConditional.cpp.

◆ error()

double JacobianFactor::error
override

Definition at line 487 of file JacobianFactor.cpp.

◆ evaluate() [1/2]

double GaussianConditional::evaluate ( const HybridValues x) const
overridevirtual

Calculate probability for HybridValues x. Simply dispatches to VectorValues version.

Reimplemented from gtsam::Conditional< JacobianFactor, GaussianConditional >.

Definition at line 213 of file GaussianConditional.cpp.

◆ evaluate() [2/2]

double GaussianConditional::evaluate ( const VectorValues x) const

Calculate probability density for given values x: exp(logProbability(x)) == exp(-GaussianFactor::error(x)) / sqrt((2*pi)^n*det(Sigma)) where x is the vector of values, and Sigma is the covariance matrix.

Definition at line 209 of file GaussianConditional.cpp.

◆ FromMeanAndStddev() [1/3]

GaussianConditional GaussianConditional::FromMeanAndStddev ( Key  key,
const Matrix A,
Key  parent,
const Vector b,
double  sigma 
)
static

Construct from conditional mean A1 p1 + b and standard deviation.

Definition at line 77 of file GaussianConditional.cpp.

◆ FromMeanAndStddev() [2/3]

GaussianConditional GaussianConditional::FromMeanAndStddev ( Key  key,
const Matrix A1,
Key  parent1,
const Matrix A2,
Key  parent2,
const Vector b,
double  sigma 
)
static

Construct from conditional mean A1 p1 + A2 p2 + b and standard deviation sigma.

Definition at line 88 of file GaussianConditional.cpp.

◆ FromMeanAndStddev() [3/3]

GaussianConditional GaussianConditional::FromMeanAndStddev ( Key  key,
const Vector mu,
double  sigma 
)
static

Construct from mean mu and standard deviation sigma.

Definition at line 66 of file GaussianConditional.cpp.

◆ likelihood() [1/2]

JacobianFactor::shared_ptr GaussianConditional::likelihood ( const Vector frontal) const

Single variable version of likelihood.

Definition at line 328 of file GaussianConditional.cpp.

◆ likelihood() [2/2]

JacobianFactor::shared_ptr GaussianConditional::likelihood ( const VectorValues frontalValues) const

Convert to a likelihood factor by providing value before bar.

Definition at line 296 of file GaussianConditional.cpp.

◆ logDeterminant()

double GaussianConditional::logDeterminant ( ) const

Compute the log determinant of the R matrix.

For numerical stability, the determinant is computed in log form, so it is a summation rather than a multiplication.

Note, the covariance matrix $ \Sigma = (R^T R)^{-1} $, and hence $ \log \det(\Sigma) = - \log \det(R^T R) = - 2 logDeterminant() $.

Returns
double

Definition at line 172 of file GaussianConditional.cpp.

◆ logProbability() [1/2]

double GaussianConditional::logProbability ( const HybridValues x) const
overridevirtual

Calculate log-probability log(evaluate(x)) for HybridValues x. Simply dispatches to VectorValues version.

Reimplemented from gtsam::Conditional< JacobianFactor, GaussianConditional >.

Definition at line 204 of file GaussianConditional.cpp.

◆ logProbability() [2/2]

double GaussianConditional::logProbability ( const VectorValues x) const

Calculate log-probability log(evaluate(x)) for given values x: -error(x) - 0.5 * n*log(2*pi) - 0.5 * log det(Sigma) where x is the vector of values, and Sigma is the covariance matrix. This differs from error as it is log, not negative log, and it includes the normalization constant.

Definition at line 200 of file GaussianConditional.cpp.

◆ negLogConstant()

double GaussianConditional::negLogConstant ( ) const
override

Return the negative log of the normalization constant.

normalization constant k = 1.0 / sqrt((2*pi)^n*det(Sigma)) -log(k) = 0.5 * n*log(2*pi) + 0.5 * log det(Sigma)

Returns
double

Definition at line 185 of file GaussianConditional.cpp.

◆ operator()()

double gtsam::GaussianConditional::operator() ( const VectorValues x) const
inline

Evaluate probability density, sugar.

Definition at line 162 of file GaussianConditional.h.

◆ print()

void GaussianConditional::print ( const std::string &  s = "GaussianConditional",
const KeyFormatter formatter = DefaultKeyFormatter 
) const
overridevirtual

print

Implements gtsam::GaussianFactor.

Reimplemented in gtsam::GaussianDensity.

Definition at line 101 of file GaussianConditional.cpp.

◆ R()

constABlock gtsam::GaussianConditional::R ( ) const
inline

Return a view of the upper-triangular R block of the conditional

Definition at line 222 of file GaussianConditional.h.

◆ S() [1/2]

constABlock gtsam::GaussianConditional::S ( ) const
inline

Get a view of the parent blocks.

Definition at line 225 of file GaussianConditional.h.

◆ S() [2/2]

constABlock gtsam::GaussianConditional::S ( const_iterator  it) const
inline

Get a view of the S matrix for the variable pointed to by the given key iterator

Definition at line 228 of file GaussianConditional.h.

◆ sample() [1/4]

VectorValues GaussianConditional::sample ( ) const

Sample, use default rng.

Definition at line 366 of file GaussianConditional.cpp.

◆ sample() [2/4]

VectorValues GaussianConditional::sample ( const VectorValues parentsValues) const

Sample with given values, use default rng.

Definition at line 370 of file GaussianConditional.cpp.

◆ sample() [3/4]

VectorValues GaussianConditional::sample ( const VectorValues parentsValues,
std::mt19937_64 *  rng 
) const

Sample from conditional, given missing variables Example: std::mt19937_64 rng(42); VectorValues given = ...; auto sample = gbn.sample(given, &rng);

Definition at line 340 of file GaussianConditional.cpp.

◆ sample() [4/4]

VectorValues GaussianConditional::sample ( std::mt19937_64 *  rng) const

Sample from conditional, zero parent version Example: std::mt19937_64 rng(42); auto sample = gbn.sample(&rng);

Definition at line 357 of file GaussianConditional.cpp.

◆ sharedMeanAndStddev()

template<typename... Args>
static shared_ptr gtsam::GaussianConditional::sharedMeanAndStddev ( Args &&...  args)
inlinestatic

Create shared pointer by forwarding arguments to fromMeanAndStddev.

Definition at line 105 of file GaussianConditional.h.

◆ solve()

VectorValues GaussianConditional::solve ( const VectorValues parents) const

Solves a conditional Gaussian and writes the solution into the entries of x for each frontal variable of the conditional. The parents are assumed to have already been solved in and their values are read from x. This function works for multiple frontal variables.

Given the Gaussian conditional with log likelihood $ |R x_f - (d - S x_s)|^2 $, where $ f $ are the frontal variables and $ s $ are the separator variables of this conditional, this solve function computes $ x_f = R^{-1} (d - S x_s) $ using back-substitution.

Parameters
parentsVectorValues containing solved parents $ x_s $.

Definition at line 218 of file GaussianConditional.cpp.

◆ solveOtherRHS()

VectorValues GaussianConditional::solveOtherRHS ( const VectorValues parents,
const VectorValues rhs 
) const

Definition at line 245 of file GaussianConditional.cpp.

◆ solveTransposeInPlace()

void GaussianConditional::solveTransposeInPlace ( VectorValues gy) const

Performs transpose backsubstition in place on values

Definition at line 273 of file GaussianConditional.cpp.


The documentation for this class was generated from the following files:


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:15:15