Go to the documentation of this file.
61 static double f(
double z,
double u,
double p) {
77 double e = u -
z, e2 =
e *
e;
113 void print(
const std::string&
p =
"WhiteNoiseFactor",
116 std::cout <<
p +
".z: " <<
z_ << std::endl;
124 size_t dim()
const override {
~WhiteNoiseFactor() override
Destructor.
A Gaussian factor using the canonical parameters (information form)
Array< double, 1, 3 > e(1./3., 0.5, 2.)
Pose3 g1(Rot3(), Point3(100.0, 0.0, 300.0))
void print(const std::string &p="WhiteNoiseFactor", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
Print.
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
static double f(double z, double u, double p)
negative log likelihood as a function of mean and precision
Contains the HessianFactor class, a general quadratic factor.
const EIGEN_DEVICE_FUNC LogReturnType log() const
std::shared_ptr< This > shared_ptr
A shared_ptr to this class.
KeyFormatter DefaultKeyFormatter
Assign default key formatter.
Key meanKey_
key by which to access mean variable
std::function< std::string(Key)> KeyFormatter
Typedef for a function to format a key, i.e. to convert it to a string.
Pose3 g2(g1.expmap(h *V1_g1))
const double logSqrt2PI
constant needed below
void print(const std::string &s="", const KeyFormatter &keyFormatter=DefaultKeyFormatter) const override
size_t dim() const override
get the dimension of the factor (number of rows on linearization)
Non-linear factor base classes.
std::shared_ptr< GaussianFactor > linearize(const Values &x) const override
linearize returns a Hessianfactor that is an approximation of error(p)
Key precisionKey_
key by which to access precision variable
Binary factor to estimate parameters of zero-mean Gaussian white noise.
std::uint64_t Key
Integer nonlinear key type.
virtual Vector unwhitenedError(const Values &x) const
WhiteNoiseFactor(double z, Key meanKey, Key precisionKey)
Jet< T, N > sqrt(const Jet< T, N > &f)
double error(const Values &x) const override
Calculate the error of the factor, typically equal to log-likelihood.
static HessianFactor::shared_ptr linearize(double z, double u, double p, Key j1, Key j2)
linearize returns a Hessianfactor that approximates error Hessian is
gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:09:32