SelfadjointMatrixMatrix.h
Go to the documentation of this file.
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SELFADJOINT_MATRIX_MATRIX_H
11 #define EIGEN_SELFADJOINT_MATRIX_MATRIX_H
12 
13 namespace Eigen {
14 
15 namespace internal {
16 
17 // pack a selfadjoint block diagonal for use with the gebp_kernel
18 template<typename Scalar, typename Index, int Pack1, int Pack2_dummy, int StorageOrder>
20 {
21  template<int BlockRows> inline
23  {
24  // normal copy
25  for(Index k=0; k<i; k++)
26  for(Index w=0; w<BlockRows; w++)
27  blockA[count++] = lhs(i+w,k); // normal
28  // symmetric copy
29  Index h = 0;
30  for(Index k=i; k<i+BlockRows; k++)
31  {
32  for(Index w=0; w<h; w++)
33  blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
34 
35  blockA[count++] = numext::real(lhs(k,k)); // real (diagonal)
36 
37  for(Index w=h+1; w<BlockRows; w++)
38  blockA[count++] = lhs(i+w, k); // normal
39  ++h;
40  }
41  // transposed copy
42  for(Index k=i+BlockRows; k<cols; k++)
43  for(Index w=0; w<BlockRows; w++)
44  blockA[count++] = numext::conj(lhs(k, i+w)); // transposed
45  }
46  void operator()(Scalar* blockA, const Scalar* _lhs, Index lhsStride, Index cols, Index rows)
47  {
50  enum { PacketSize = packet_traits<Scalar>::size,
51  HalfPacketSize = unpacket_traits<HalfPacket>::size,
52  QuarterPacketSize = unpacket_traits<QuarterPacket>::size,
53  HasHalf = (int)HalfPacketSize < (int)PacketSize,
54  HasQuarter = (int)QuarterPacketSize < (int)HalfPacketSize};
55 
57  Index count = 0;
58  //Index peeled_mc3 = (rows/Pack1)*Pack1;
59 
60  const Index peeled_mc3 = Pack1>=3*PacketSize ? (rows/(3*PacketSize))*(3*PacketSize) : 0;
61  const Index peeled_mc2 = Pack1>=2*PacketSize ? peeled_mc3+((rows-peeled_mc3)/(2*PacketSize))*(2*PacketSize) : 0;
62  const Index peeled_mc1 = Pack1>=1*PacketSize ? peeled_mc2+((rows-peeled_mc2)/(1*PacketSize))*(1*PacketSize) : 0;
63  const Index peeled_mc_half = Pack1>=HalfPacketSize ? peeled_mc1+((rows-peeled_mc1)/(HalfPacketSize))*(HalfPacketSize) : 0;
64  const Index peeled_mc_quarter = Pack1>=QuarterPacketSize ? peeled_mc_half+((rows-peeled_mc_half)/(QuarterPacketSize))*(QuarterPacketSize) : 0;
65 
66  if(Pack1>=3*PacketSize)
67  for(Index i=0; i<peeled_mc3; i+=3*PacketSize)
68  pack<3*PacketSize>(blockA, lhs, cols, i, count);
69 
70  if(Pack1>=2*PacketSize)
71  for(Index i=peeled_mc3; i<peeled_mc2; i+=2*PacketSize)
72  pack<2*PacketSize>(blockA, lhs, cols, i, count);
73 
74  if(Pack1>=1*PacketSize)
75  for(Index i=peeled_mc2; i<peeled_mc1; i+=1*PacketSize)
76  pack<1*PacketSize>(blockA, lhs, cols, i, count);
77 
78  if(HasHalf && Pack1>=HalfPacketSize)
79  for(Index i=peeled_mc1; i<peeled_mc_half; i+=HalfPacketSize)
80  pack<HalfPacketSize>(blockA, lhs, cols, i, count);
81 
82  if(HasQuarter && Pack1>=QuarterPacketSize)
83  for(Index i=peeled_mc_half; i<peeled_mc_quarter; i+=QuarterPacketSize)
84  pack<QuarterPacketSize>(blockA, lhs, cols, i, count);
85 
86  // do the same with mr==1
87  for(Index i=peeled_mc_quarter; i<rows; i++)
88  {
89  for(Index k=0; k<i; k++)
90  blockA[count++] = lhs(i, k); // normal
91 
92  blockA[count++] = numext::real(lhs(i, i)); // real (diagonal)
93 
94  for(Index k=i+1; k<cols; k++)
95  blockA[count++] = numext::conj(lhs(k, i)); // transposed
96  }
97  }
98 };
99 
100 template<typename Scalar, typename Index, int nr, int StorageOrder>
102 {
104  void operator()(Scalar* blockB, const Scalar* _rhs, Index rhsStride, Index rows, Index cols, Index k2)
105  {
106  Index end_k = k2 + rows;
107  Index count = 0;
109  Index packet_cols8 = nr>=8 ? (cols/8) * 8 : 0;
110  Index packet_cols4 = nr>=4 ? (cols/4) * 4 : 0;
111 
112  // first part: normal case
113  for(Index j2=0; j2<k2; j2+=nr)
114  {
115  for(Index k=k2; k<end_k; k++)
116  {
117  blockB[count+0] = rhs(k,j2+0);
118  blockB[count+1] = rhs(k,j2+1);
119  if (nr>=4)
120  {
121  blockB[count+2] = rhs(k,j2+2);
122  blockB[count+3] = rhs(k,j2+3);
123  }
124  if (nr>=8)
125  {
126  blockB[count+4] = rhs(k,j2+4);
127  blockB[count+5] = rhs(k,j2+5);
128  blockB[count+6] = rhs(k,j2+6);
129  blockB[count+7] = rhs(k,j2+7);
130  }
131  count += nr;
132  }
133  }
134 
135  // second part: diagonal block
136  Index end8 = nr>=8 ? (std::min)(k2+rows,packet_cols8) : k2;
137  if(nr>=8)
138  {
139  for(Index j2=k2; j2<end8; j2+=8)
140  {
141  // again we can split vertically in three different parts (transpose, symmetric, normal)
142  // transpose
143  for(Index k=k2; k<j2; k++)
144  {
145  blockB[count+0] = numext::conj(rhs(j2+0,k));
146  blockB[count+1] = numext::conj(rhs(j2+1,k));
147  blockB[count+2] = numext::conj(rhs(j2+2,k));
148  blockB[count+3] = numext::conj(rhs(j2+3,k));
149  blockB[count+4] = numext::conj(rhs(j2+4,k));
150  blockB[count+5] = numext::conj(rhs(j2+5,k));
151  blockB[count+6] = numext::conj(rhs(j2+6,k));
152  blockB[count+7] = numext::conj(rhs(j2+7,k));
153  count += 8;
154  }
155  // symmetric
156  Index h = 0;
157  for(Index k=j2; k<j2+8; k++)
158  {
159  // normal
160  for (Index w=0 ; w<h; ++w)
161  blockB[count+w] = rhs(k,j2+w);
162 
163  blockB[count+h] = numext::real(rhs(k,k));
164 
165  // transpose
166  for (Index w=h+1 ; w<8; ++w)
167  blockB[count+w] = numext::conj(rhs(j2+w,k));
168  count += 8;
169  ++h;
170  }
171  // normal
172  for(Index k=j2+8; k<end_k; k++)
173  {
174  blockB[count+0] = rhs(k,j2+0);
175  blockB[count+1] = rhs(k,j2+1);
176  blockB[count+2] = rhs(k,j2+2);
177  blockB[count+3] = rhs(k,j2+3);
178  blockB[count+4] = rhs(k,j2+4);
179  blockB[count+5] = rhs(k,j2+5);
180  blockB[count+6] = rhs(k,j2+6);
181  blockB[count+7] = rhs(k,j2+7);
182  count += 8;
183  }
184  }
185  }
186  if(nr>=4)
187  {
188  for(Index j2=end8; j2<(std::min)(k2+rows,packet_cols4); j2+=4)
189  {
190  // again we can split vertically in three different parts (transpose, symmetric, normal)
191  // transpose
192  for(Index k=k2; k<j2; k++)
193  {
194  blockB[count+0] = numext::conj(rhs(j2+0,k));
195  blockB[count+1] = numext::conj(rhs(j2+1,k));
196  blockB[count+2] = numext::conj(rhs(j2+2,k));
197  blockB[count+3] = numext::conj(rhs(j2+3,k));
198  count += 4;
199  }
200  // symmetric
201  Index h = 0;
202  for(Index k=j2; k<j2+4; k++)
203  {
204  // normal
205  for (Index w=0 ; w<h; ++w)
206  blockB[count+w] = rhs(k,j2+w);
207 
208  blockB[count+h] = numext::real(rhs(k,k));
209 
210  // transpose
211  for (Index w=h+1 ; w<4; ++w)
212  blockB[count+w] = numext::conj(rhs(j2+w,k));
213  count += 4;
214  ++h;
215  }
216  // normal
217  for(Index k=j2+4; k<end_k; k++)
218  {
219  blockB[count+0] = rhs(k,j2+0);
220  blockB[count+1] = rhs(k,j2+1);
221  blockB[count+2] = rhs(k,j2+2);
222  blockB[count+3] = rhs(k,j2+3);
223  count += 4;
224  }
225  }
226  }
227 
228  // third part: transposed
229  if(nr>=8)
230  {
231  for(Index j2=k2+rows; j2<packet_cols8; j2+=8)
232  {
233  for(Index k=k2; k<end_k; k++)
234  {
235  blockB[count+0] = numext::conj(rhs(j2+0,k));
236  blockB[count+1] = numext::conj(rhs(j2+1,k));
237  blockB[count+2] = numext::conj(rhs(j2+2,k));
238  blockB[count+3] = numext::conj(rhs(j2+3,k));
239  blockB[count+4] = numext::conj(rhs(j2+4,k));
240  blockB[count+5] = numext::conj(rhs(j2+5,k));
241  blockB[count+6] = numext::conj(rhs(j2+6,k));
242  blockB[count+7] = numext::conj(rhs(j2+7,k));
243  count += 8;
244  }
245  }
246  }
247  if(nr>=4)
248  {
249  for(Index j2=(std::max)(packet_cols8,k2+rows); j2<packet_cols4; j2+=4)
250  {
251  for(Index k=k2; k<end_k; k++)
252  {
253  blockB[count+0] = numext::conj(rhs(j2+0,k));
254  blockB[count+1] = numext::conj(rhs(j2+1,k));
255  blockB[count+2] = numext::conj(rhs(j2+2,k));
256  blockB[count+3] = numext::conj(rhs(j2+3,k));
257  count += 4;
258  }
259  }
260  }
261 
262  // copy the remaining columns one at a time (=> the same with nr==1)
263  for(Index j2=packet_cols4; j2<cols; ++j2)
264  {
265  // transpose
266  Index half = (std::min)(end_k,j2);
267  for(Index k=k2; k<half; k++)
268  {
269  blockB[count] = numext::conj(rhs(j2,k));
270  count += 1;
271  }
272 
273  if(half==j2 && half<k2+rows)
274  {
275  blockB[count] = numext::real(rhs(j2,j2));
276  count += 1;
277  }
278  else
279  half--;
280 
281  // normal
282  for(Index k=half+1; k<k2+rows; k++)
283  {
284  blockB[count] = rhs(k,j2);
285  count += 1;
286  }
287  }
288  }
289 };
290 
291 /* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
292  * the general matrix matrix product.
293  */
294 template <typename Scalar, typename Index,
295  int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
296  int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
297  int ResStorageOrder, int ResInnerStride>
299 
300 template <typename Scalar, typename Index,
301  int LhsStorageOrder, bool LhsSelfAdjoint, bool ConjugateLhs,
302  int RhsStorageOrder, bool RhsSelfAdjoint, bool ConjugateRhs,
303  int ResInnerStride>
304 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,LhsSelfAdjoint,ConjugateLhs, RhsStorageOrder,RhsSelfAdjoint,ConjugateRhs,RowMajor,ResInnerStride>
305 {
306 
308  Index rows, Index cols,
309  const Scalar* lhs, Index lhsStride,
310  const Scalar* rhs, Index rhsStride,
311  Scalar* res, Index resIncr, Index resStride,
312  const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
313  {
315  EIGEN_LOGICAL_XOR(RhsSelfAdjoint,RhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
316  RhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsSelfAdjoint,ConjugateRhs),
317  EIGEN_LOGICAL_XOR(LhsSelfAdjoint,LhsStorageOrder==RowMajor) ? ColMajor : RowMajor,
318  LhsSelfAdjoint, NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsSelfAdjoint,ConjugateLhs),
319  ColMajor,ResInnerStride>
320  ::run(cols, rows, rhs, rhsStride, lhs, lhsStride, res, resIncr, resStride, alpha, blocking);
321  }
322 };
323 
324 template <typename Scalar, typename Index,
325  int LhsStorageOrder, bool ConjugateLhs,
326  int RhsStorageOrder, bool ConjugateRhs,
327  int ResInnerStride>
328 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,true,ConjugateLhs, RhsStorageOrder,false,ConjugateRhs,ColMajor,ResInnerStride>
329 {
330 
331  static EIGEN_DONT_INLINE void run(
332  Index rows, Index cols,
333  const Scalar* _lhs, Index lhsStride,
334  const Scalar* _rhs, Index rhsStride,
335  Scalar* res, Index resIncr, Index resStride,
336  const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
337 };
338 
339 template <typename Scalar, typename Index,
340  int LhsStorageOrder, bool ConjugateLhs,
341  int RhsStorageOrder, bool ConjugateRhs,
342  int ResInnerStride>
344  Index rows, Index cols,
345  const Scalar* _lhs, Index lhsStride,
346  const Scalar* _rhs, Index rhsStride,
347  Scalar* _res, Index resIncr, Index resStride,
348  const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
349  {
350  Index size = rows;
351 
352  typedef gebp_traits<Scalar,Scalar> Traits;
353 
355  typedef const_blas_data_mapper<Scalar, Index, (LhsStorageOrder == RowMajor) ? ColMajor : RowMajor> LhsTransposeMapper;
358  LhsMapper lhs(_lhs,lhsStride);
359  LhsTransposeMapper lhs_transpose(_lhs,lhsStride);
360  RhsMapper rhs(_rhs,rhsStride);
361  ResMapper res(_res, resStride, resIncr);
362 
363  Index kc = blocking.kc(); // cache block size along the K direction
364  Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
365  // kc must be smaller than mc
366  kc = (std::min)(kc,mc);
367  std::size_t sizeA = kc*mc;
368  std::size_t sizeB = kc*cols;
369  ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
370  ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
371 
376 
377  for(Index k2=0; k2<size; k2+=kc)
378  {
379  const Index actual_kc = (std::min)(k2+kc,size)-k2;
380 
381  // we have selected one row panel of rhs and one column panel of lhs
382  // pack rhs's panel into a sequential chunk of memory
383  // and expand each coeff to a constant packet for further reuse
384  pack_rhs(blockB, rhs.getSubMapper(k2,0), actual_kc, cols);
385 
386  // the select lhs's panel has to be split in three different parts:
387  // 1 - the transposed panel above the diagonal block => transposed packed copy
388  // 2 - the diagonal block => special packed copy
389  // 3 - the panel below the diagonal block => generic packed copy
390  for(Index i2=0; i2<k2; i2+=mc)
391  {
392  const Index actual_mc = (std::min)(i2+mc,k2)-i2;
393  // transposed packed copy
394  pack_lhs_transposed(blockA, lhs_transpose.getSubMapper(i2, k2), actual_kc, actual_mc);
395 
396  gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
397  }
398  // the block diagonal
399  {
400  const Index actual_mc = (std::min)(k2+kc,size)-k2;
401  // symmetric packed copy
402  pack_lhs(blockA, &lhs(k2,k2), lhsStride, actual_kc, actual_mc);
403 
404  gebp_kernel(res.getSubMapper(k2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
405  }
406 
407  for(Index i2=k2+kc; i2<size; i2+=mc)
408  {
409  const Index actual_mc = (std::min)(i2+mc,size)-i2;
411  (blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
412 
413  gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
414  }
415  }
416  }
417 
418 // matrix * selfadjoint product
419 template <typename Scalar, typename Index,
420  int LhsStorageOrder, bool ConjugateLhs,
421  int RhsStorageOrder, bool ConjugateRhs,
422  int ResInnerStride>
423 struct product_selfadjoint_matrix<Scalar,Index,LhsStorageOrder,false,ConjugateLhs, RhsStorageOrder,true,ConjugateRhs,ColMajor,ResInnerStride>
424 {
425 
426  static EIGEN_DONT_INLINE void run(
427  Index rows, Index cols,
428  const Scalar* _lhs, Index lhsStride,
429  const Scalar* _rhs, Index rhsStride,
430  Scalar* res, Index resIncr, Index resStride,
431  const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking);
432 };
433 
434 template <typename Scalar, typename Index,
435  int LhsStorageOrder, bool ConjugateLhs,
436  int RhsStorageOrder, bool ConjugateRhs,
437  int ResInnerStride>
439  Index rows, Index cols,
440  const Scalar* _lhs, Index lhsStride,
441  const Scalar* _rhs, Index rhsStride,
442  Scalar* _res, Index resIncr, Index resStride,
443  const Scalar& alpha, level3_blocking<Scalar,Scalar>& blocking)
444  {
445  Index size = cols;
446 
447  typedef gebp_traits<Scalar,Scalar> Traits;
448 
451  LhsMapper lhs(_lhs,lhsStride);
452  ResMapper res(_res,resStride, resIncr);
453 
454  Index kc = blocking.kc(); // cache block size along the K direction
455  Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction
456  std::size_t sizeA = kc*mc;
457  std::size_t sizeB = kc*cols;
458  ei_declare_aligned_stack_constructed_variable(Scalar, blockA, sizeA, blocking.blockA());
459  ei_declare_aligned_stack_constructed_variable(Scalar, blockB, sizeB, blocking.blockB());
460 
464 
465  for(Index k2=0; k2<size; k2+=kc)
466  {
467  const Index actual_kc = (std::min)(k2+kc,size)-k2;
468 
469  pack_rhs(blockB, _rhs, rhsStride, actual_kc, cols, k2);
470 
471  // => GEPP
472  for(Index i2=0; i2<rows; i2+=mc)
473  {
474  const Index actual_mc = (std::min)(i2+mc,rows)-i2;
475  pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc);
476 
477  gebp_kernel(res.getSubMapper(i2, 0), blockA, blockB, actual_mc, actual_kc, cols, alpha);
478  }
479  }
480  }
481 
482 } // end namespace internal
483 
484 /***************************************************************************
485 * Wrapper to product_selfadjoint_matrix
486 ***************************************************************************/
487 
488 namespace internal {
489 
490 template<typename Lhs, int LhsMode, typename Rhs, int RhsMode>
491 struct selfadjoint_product_impl<Lhs,LhsMode,false,Rhs,RhsMode,false>
492 {
494 
499 
500  enum {
501  LhsIsUpper = (LhsMode&(Upper|Lower))==Upper,
502  LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
503  RhsIsUpper = (RhsMode&(Upper|Lower))==Upper,
504  RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
505  };
506 
507  template<typename Dest>
508  static void run(Dest &dst, const Lhs &a_lhs, const Rhs &a_rhs, const Scalar& alpha)
509  {
510  eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols());
511 
512  typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs);
513  typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs);
514 
515  Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs)
516  * RhsBlasTraits::extractScalarFactor(a_rhs);
517 
519  Lhs::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime, Lhs::MaxColsAtCompileTime,1> BlockingType;
520 
521  BlockingType blocking(lhs.rows(), rhs.cols(), lhs.cols(), 1, false);
522 
525  NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(LhsIsUpper,bool(LhsBlasTraits::NeedToConjugate)),
527  NumTraits<Scalar>::IsComplex && EIGEN_LOGICAL_XOR(RhsIsUpper,bool(RhsBlasTraits::NeedToConjugate)),
529  Dest::InnerStrideAtCompileTime>
530  ::run(
531  lhs.rows(), rhs.cols(), // sizes
532  &lhs.coeffRef(0,0), lhs.outerStride(), // lhs info
533  &rhs.coeffRef(0,0), rhs.outerStride(), // rhs info
534  &dst.coeffRef(0,0), dst.innerStride(), dst.outerStride(), // result info
535  actualAlpha, blocking // alpha
536  );
537  }
538 };
539 
540 } // end namespace internal
541 
542 } // end namespace Eigen
543 
544 #endif // EIGEN_SELFADJOINT_MATRIX_MATRIX_H
w
RowVector3d w
Definition: Matrix_resize_int.cpp:3
gtsam.examples.DogLegOptimizerExample.int
int
Definition: DogLegOptimizerExample.py:111
Eigen::internal::level3_blocking::mc
Index mc() const
Definition: GeneralMatrixMatrix.h:270
Eigen::internal::Lhs
@ Lhs
Definition: TensorContractionMapper.h:19
Eigen
Namespace containing all symbols from the Eigen library.
Definition: jet.h:637
Eigen::internal::level3_blocking::blockA
LhsScalar * blockA()
Definition: GeneralMatrixMatrix.h:274
Eigen::internal::gebp_traits
Definition: products/GeneralBlockPanelKernel.h:25
alpha
RealScalar alpha
Definition: level1_cplx_impl.h:147
eigen_assert
#define eigen_assert(x)
Definition: Macros.h:1037
Eigen::RowMajorBit
const unsigned int RowMajorBit
Definition: Constants.h:66
Eigen::internal::packet_traits
Definition: GenericPacketMath.h:106
Eigen::Upper
@ Upper
Definition: Constants.h:211
real
float real
Definition: datatypes.h:10
Eigen::RowMajor
@ RowMajor
Definition: Constants.h:321
res
cout<< "Here is the matrix m:"<< endl<< m<< endl;Matrix< ptrdiff_t, 3, 1 > res
Definition: PartialRedux_count.cpp:3
h
const double h
Definition: testSimpleHelicopter.cpp:19
ei_declare_aligned_stack_constructed_variable
#define ei_declare_aligned_stack_constructed_variable(TYPE, NAME, SIZE, BUFFER)
Definition: Memory.h:768
Eigen::internal::symm_pack_rhs
Definition: SelfadjointMatrixMatrix.h:101
rows
int rows
Definition: Tutorial_commainit_02.cpp:1
Eigen::internal::selfadjoint_product_impl< Lhs, LhsMode, false, Rhs, RhsMode, false >::Scalar
Product< Lhs, Rhs >::Scalar Scalar
Definition: SelfadjointMatrixMatrix.h:497
Eigen::internal::symm_pack_lhs
Definition: SelfadjointMatrixMatrix.h:19
Eigen::internal::gemm_blocking_space
Definition: GeneralMatrixMatrix.h:248
Eigen::internal::true_type
Definition: Meta.h:96
Eigen::internal::level3_blocking::blockB
RhsScalar * blockB()
Definition: GeneralMatrixMatrix.h:275
Eigen::internal::unpacket_traits
Definition: GenericPacketMath.h:132
Eigen::internal::product_selfadjoint_matrix
Definition: SelfadjointMatrixMatrix.h:298
EIGEN_STRONG_INLINE
#define EIGEN_STRONG_INLINE
Definition: Macros.h:917
Eigen::internal::gebp_kernel
Definition: products/GeneralBlockPanelKernel.h:1057
Eigen::Product
Expression of the product of two arbitrary matrices or vectors.
Definition: Product.h:71
gtsam.examples.DogLegOptimizerExample.run
def run(args)
Definition: DogLegOptimizerExample.py:21
conj
AnnoyingScalar conj(const AnnoyingScalar &x)
Definition: AnnoyingScalar.h:104
Eigen::internal::product_selfadjoint_matrix< Scalar, Index, LhsStorageOrder, LhsSelfAdjoint, ConjugateLhs, RhsStorageOrder, RhsSelfAdjoint, ConjugateRhs, RowMajor, ResInnerStride >::run
static EIGEN_STRONG_INLINE void run(Index rows, Index cols, const Scalar *lhs, Index lhsStride, const Scalar *rhs, Index rhsStride, Scalar *res, Index resIncr, Index resStride, const Scalar &alpha, level3_blocking< Scalar, Scalar > &blocking)
Definition: SelfadjointMatrixMatrix.h:307
Eigen::internal::symm_pack_rhs::operator()
void operator()(Scalar *blockB, const Scalar *_rhs, Index rhsStride, Index rows, Index cols, Index k2)
Definition: SelfadjointMatrixMatrix.h:104
Eigen::Lower
@ Lower
Definition: Constants.h:209
Eigen::internal::level3_blocking
Definition: GeneralMatrixMatrix.h:17
Eigen::internal::symm_pack_rhs::PacketSize
@ PacketSize
Definition: SelfadjointMatrixMatrix.h:103
size_t
std::size_t size_t
Definition: wrap/pybind11/include/pybind11/detail/common.h:490
Eigen::internal::gemm_pack_rhs
Definition: BlasUtil.h:25
Eigen::internal::symm_pack_lhs::pack
void pack(Scalar *blockA, const const_blas_data_mapper< Scalar, Index, StorageOrder > &lhs, Index cols, Index i, Index &count)
Definition: SelfadjointMatrixMatrix.h:22
Eigen::internal::blas_data_mapper
Definition: BlasUtil.h:112
Eigen::internal::traits
Definition: ForwardDeclarations.h:17
Eigen::internal::gemm_pack_lhs
Definition: BlasUtil.h:28
Eigen::internal::const_blas_data_mapper
Definition: BlasUtil.h:389
Eigen::internal::Rhs
@ Rhs
Definition: TensorContractionMapper.h:18
Eigen::internal::level3_blocking::kc
Index kc() const
Definition: GeneralMatrixMatrix.h:272
Eigen::internal::blas_traits
Definition: BlasUtil.h:402
min
#define min(a, b)
Definition: datatypes.h:19
Eigen::internal::symm_pack_lhs::operator()
void operator()(Scalar *blockA, const Scalar *_lhs, Index lhsStride, Index cols, Index rows)
Definition: SelfadjointMatrixMatrix.h:46
internal
Definition: BandTriangularSolver.h:13
Eigen::ColMajor
@ ColMajor
Definition: Constants.h:319
Eigen::internal::size
EIGEN_CONSTEXPR Index size(const T &x)
Definition: Meta.h:479
cols
int cols
Definition: Tutorial_commainit_02.cpp:1
Eigen::half
Definition: Half.h:142
max
#define max(a, b)
Definition: datatypes.h:20
EIGEN_LOGICAL_XOR
#define EIGEN_LOGICAL_XOR(a, b)
Definition: Macros.h:1313
Eigen::NumTraits
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition: NumTraits.h:232
i
int i
Definition: BiCGSTAB_step_by_step.cpp:9
Eigen::SelfAdjoint
@ SelfAdjoint
Definition: Constants.h:225
Scalar
SCALAR Scalar
Definition: bench_gemm.cpp:46
Eigen::Index
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition: Meta.h:74
EIGEN_DONT_INLINE
#define EIGEN_DONT_INLINE
Definition: Macros.h:940
Eigen::internal::add_const_on_value_type
Definition: Meta.h:214


gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:03:57