Go to the documentation of this file.
27 class GaussianFactorGraph;
31 struct PreconditionerParameters;
45 const std::shared_ptr<PreconditionerParameters> &preconditioner)
46 : preconditioner(preconditioner) {}
48 void print(std::ostream &
os)
const override;
49 void print(
const std::string &
s)
const;
92 const std::map<Key, Vector> &
lambda);
const std::vector< size_t > dimensions
PCGSolverParameters parameters_
Point3 optimize(const NonlinearFactorGraph &graph, const Values &values, Key landmarkKey)
set noclip points set clip one set noclip two set bar set border lt lw set xdata set ydata set zdata set x2data set y2data set boxwidth set dummy x
ofstream os("timeSchurFactors.csv")
int EIGEN_BLAS_FUNC() scal(int *n, RealScalar *palpha, RealScalar *px, int *incx)
void print(const Matrix &A, const string &s, ostream &stream)
Implementation of Conjugate Gradient solver for a linear system.
std::map< Key, Vector > lambda_
std::shared_ptr< Preconditioner > preconditioner_
std::shared_ptr< PCGSolver > shared_ptr
double dot(const V1 &a, const V2 &b)
const GaussianFactorGraph & gfg_
std::shared_ptr< PCGSolverParameters > shared_ptr
static enum @1096 ordering
GTSAM_EXPORT VectorValues optimize(const GaussianFactorGraph &gfg, const KeyInfo *=nullptr, const std::map< Key, Vector > *lambda=nullptr)
std::shared_ptr< PreconditionerParameters > preconditioner
void axpy(double alpha, const Errors &x, Errors &y)
BLAS level 2 style AXPY, y := alpha*x + y
Array< int, Dynamic, 1 > v
ConjugateGradientParameters Base
VectorValues buildVectorValues(const Vector &v, const Ordering &ordering, const map< Key, size_t > &dimensions)
Create VectorValues from a Vector.
const Preconditioner & preconditioner_
PCGSolverParameters(const std::shared_ptr< PreconditionerParameters > &preconditioner)
gtsam
Author(s):
autogenerated on Tue Jan 7 2025 04:03:28