87 template<
class POSE,
class VELOCITY,
class IMUBIAS>
115 typedef typename std::shared_ptr<EquivInertialNavFactor_GlobalVel>
shared_ptr;
125 const Matrix& Jacobian_wrt_t0_Overall,
126 std::optional<IMUBIAS> Bias_initial = {}, std::optional<POSE>
body_P_sensor = {}) :
127 Base(model_equivalent, Pose1, Vel1, IMUBias1, Pose2, Vel2),
138 std::cout <<
s <<
"("
139 << keyFormatter(this->
key1()) <<
","
140 << keyFormatter(this->
key2()) <<
","
141 << keyFormatter(this->
key3()) <<
","
142 << keyFormatter(this->
key4()) <<
","
143 << keyFormatter(this->
key5()) <<
"\n";
144 std::cout <<
"delta_pos_in_t0: " << this->delta_pos_in_t0_.transpose() << std::endl;
145 std::cout <<
"delta_vel_in_t0: " << this->delta_vel_in_t0_.transpose() << std::endl;
146 std::cout <<
"delta_angles: " << this->delta_angles_ << std::endl;
147 std::cout <<
"dt12: " << this->dt12_ << std::endl;
148 std::cout <<
"gravity (in world frame): " << this->world_g_.transpose() << std::endl;
149 std::cout <<
"craft rate (in world frame): " << this->world_rho_.transpose() << std::endl;
150 std::cout <<
"earth's rotation (in world frame): " << this->world_omega_earth_.transpose() << std::endl;
151 if(this->body_P_sensor_)
152 this->body_P_sensor_->print(
" sensor pose in body frame: ");
171 POSE
predictPose(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1)
const {
174 Vector delta_BiasAcc = Bias1.accelerometer();
175 Vector delta_BiasGyro = Bias1.gyroscope();
186 Vector delta_pos_in_t0_corrected =
delta_pos_in_t0_ + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
194 delta_pos_in_t0_corrected, delta_angles_corrected,
202 const POSE& world_P1_body = Pose1;
203 const VELOCITY& world_V1_body = Vel1;
206 Vector body_deltaPos_body = delta_pos_in_t0;
208 Vector world_deltaPos_pls_body = world_P1_body.rotation().matrix() * body_deltaPos_body;
209 Vector world_deltaPos_body = world_V1_body * dt12 + 0.5*
world_g*dt12*dt12 + world_deltaPos_pls_body;
222 Vector body_deltaAngles_body = delta_angles;
225 Matrix body_R_world(world_P1_body.rotation().inverse().matrix());
230 body_deltaAngles_body -= (body_rho + body_omega_earth)*dt12;
232 return POSE(Pose1.rotation() *
POSE::Rotation::Expmap(body_deltaAngles_body), Pose1.translation() +
typename POSE::Translation(world_deltaPos_body));
236 VELOCITY
predictVelocity(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1)
const {
239 Vector delta_BiasAcc = Bias1.accelerometer();
240 Vector delta_BiasGyro = Bias1.gyroscope();
249 Vector delta_vel_in_t0_corrected =
delta_vel_in_t0_ + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
252 delta_vel_in_t0_corrected,
257 const Vector& delta_vel_in_t0,
260 const POSE& world_P1_body = Pose1;
261 const VELOCITY& world_V1_body = Vel1;
263 Vector body_deltaVel_body = delta_vel_in_t0;
264 Vector world_deltaVel_body = world_P1_body.rotation().matrix() * body_deltaVel_body;
266 VELOCITY VelDelta( world_deltaVel_body +
world_g * dt12 );
272 return Vel1 + VelDelta;
276 void predict(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1, POSE&
Pose2, VELOCITY& Vel2)
const {
281 POSE
evaluatePoseError(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
const POSE&
Pose2,
const VELOCITY& Vel2)
const {
293 VELOCITY
evaluateVelocityError(
const POSE& Pose1,
const VELOCITY& Vel1,
const IMUBIAS& Bias1,
const POSE&
Pose2,
const VELOCITY& Vel2)
const {
298 return Vel2Pred-Vel2;
308 Matrix H1_Pose = numericalDerivative11<POSE, POSE>(
310 this, std::placeholders::_1, Vel1, Bias1,
Pose2, Vel2),
312 Matrix H1_Vel = numericalDerivative11<VELOCITY, POSE>(
314 this, std::placeholders::_1, Vel1, Bias1,
Pose2, Vel2),
316 *H1 =
stack(2, &H1_Pose, &H1_Vel);
321 if (Vel1.size()!=3)
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
322 Matrix H2_Pose = numericalDerivative11<POSE, Vector3>(
324 this, Pose1, std::placeholders::_1, Bias1,
Pose2, Vel2),
326 Matrix H2_Vel = numericalDerivative11<Vector3, Vector3>(
328 this, Pose1, std::placeholders::_1, Bias1,
Pose2, Vel2),
330 *H2 =
stack(2, &H2_Pose, &H2_Vel);
335 Matrix H3_Pose = numericalDerivative11<POSE, IMUBIAS>(
337 this, Pose1, Vel1, std::placeholders::_1,
Pose2, Vel2),
339 Matrix H3_Vel = numericalDerivative11<VELOCITY, IMUBIAS>(
341 this, Pose1, Vel1, std::placeholders::_1,
Pose2, Vel2),
343 *H3 =
stack(2, &H3_Pose, &H3_Vel);
348 Matrix H4_Pose = numericalDerivative11<POSE, POSE>(
350 this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
352 Matrix H4_Vel = numericalDerivative11<VELOCITY, POSE>(
354 this, Pose1, Vel1, Bias1, std::placeholders::_1, Vel2),
356 *H4 =
stack(2, &H4_Pose, &H4_Vel);
361 if (Vel2.size()!=3)
throw std::runtime_error(
"Frank's hack to make this compile will not work if size != 3");
362 Matrix H5_Pose = numericalDerivative11<POSE, Vector3>(
364 this, Pose1, Vel1, Bias1,
Pose2, std::placeholders::_1),
366 Matrix H5_Vel = numericalDerivative11<Vector3, Vector3>(
368 this, Pose1, Vel1, Bias1,
Pose2, std::placeholders::_1),
370 *H5 =
stack(2, &H5_Pose, &H5_Vel);
385 const std::optional<IMUBIAS>& Bias_initial = {}) {
389 Vector delta_BiasAcc = Bias1.accelerometer();
390 Vector delta_BiasGyro = Bias1.gyroscope();
392 delta_BiasAcc -= Bias_initial->accelerometer();
393 delta_BiasGyro -= Bias_initial->gyroscope();
396 Matrix J_Pos_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(4,9,3,3);
397 Matrix J_Pos_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(4,12,3,3);
398 Matrix J_angles_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(0,12,3,3);
401 Vector delta_pos_in_t0_corrected = delta_pos_in_t0 + J_Pos_wrt_BiasAcc*delta_BiasAcc + J_Pos_wrt_BiasGyro*delta_BiasGyro;
404 Vector delta_angles_corrected = delta_angles + J_angles_wrt_BiasGyro*delta_BiasGyro;
414 const std::optional<IMUBIAS>& Bias_initial = {}) {
417 Vector delta_BiasAcc = Bias1.accelerometer();
418 Vector delta_BiasGyro = Bias1.gyroscope();
420 delta_BiasAcc -= Bias_initial->accelerometer();
421 delta_BiasGyro -= Bias_initial->gyroscope();
424 Matrix J_Vel_wrt_BiasAcc = Jacobian_wrt_t0_Overall.block(6,9,3,3);
425 Matrix J_Vel_wrt_BiasGyro = Jacobian_wrt_t0_Overall.block(6,12,3,3);
427 Vector delta_vel_in_t0_corrected = delta_vel_in_t0 + J_Vel_wrt_BiasAcc*delta_BiasAcc + J_Vel_wrt_BiasGyro*delta_BiasGyro;
436 const std::optional<IMUBIAS>& Bias_initial = {}) {
438 Pose2 =
PredictPoseFromPreIntegration(Pose1, Vel1, Bias1, delta_pos_in_t0, delta_angles, dt12,
world_g,
world_rho,
world_omega_earth, Jacobian_wrt_t0_Overall, Bias_initial);
446 Matrix& EquivCov_Overall,
Matrix& Jacobian_wrt_t0_Overall,
const IMUBIAS Bias_t0 = IMUBIAS(),
447 std::optional<POSE> p_body_P_sensor = {}){
452 bool flag_use_body_P_sensor =
false;
453 if (p_body_P_sensor){
455 flag_use_body_P_sensor =
true;
468 Matrix H_pos_pos = numericalDerivative11<Vector3, Vector3>(
470 std::placeholders::_1, delta_vel_in_t0),
472 Matrix H_pos_vel = numericalDerivative11<Vector3, Vector3>(
474 delta_pos_in_t0, std::placeholders::_1),
476 Matrix H_pos_angles = Z_3x3;
479 Matrix H_vel_vel = numericalDerivative11<Vector3, Vector3>(
481 msr_acc_t, msr_dt, delta_angles, std::placeholders::_1,
484 Matrix H_vel_angles = numericalDerivative11<Vector3, Vector3>(
486 msr_acc_t, msr_dt, std::placeholders::_1, delta_vel_in_t0,
489 Matrix H_vel_bias = numericalDerivative11<Vector3, IMUBIAS>(
491 msr_acc_t, msr_dt, delta_angles, delta_vel_in_t0,
493 std::placeholders::_1),
497 Matrix H_angles_angles = numericalDerivative11<Vector3, Vector3>(
499 msr_dt, std::placeholders::_1, flag_use_body_P_sensor,
502 Matrix H_angles_bias = numericalDerivative11<Vector3, IMUBIAS>(
505 std::placeholders::_1),
507 Matrix H_angles_pos = Z_3x3;
508 Matrix H_angles_vel = Z_3x3;
510 Matrix F_angles =
collect(4, &H_angles_angles, &H_angles_pos, &H_angles_vel, &H_angles_bias);
511 Matrix F_pos =
collect(4, &H_pos_angles, &H_pos_pos, &H_pos_vel, &H_pos_bias);
512 Matrix F_vel =
collect(4, &H_vel_angles, &H_vel_pos, &H_vel_vel, &H_vel_bias);
513 Matrix F_bias_a =
collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3, &Z_3x3);
514 Matrix F_bias_g =
collect(5, &Z_3x3, &Z_3x3, &Z_3x3, &Z_3x3, &I_3x3);
515 Matrix F =
stack(5, &F_angles, &F_pos, &F_vel, &F_bias_a, &F_bias_g);
519 Matrix Q_d = (model_discrete_curr->R().transpose() * model_discrete_curr->R()).
inverse();
521 EquivCov_Overall =
F * EquivCov_Overall *
F.transpose() + Q_d;
526 Jacobian_wrt_t0_Overall =
F * Jacobian_wrt_t0_Overall;
530 const Vector& delta_pos_in_t0,
const Vector& delta_vel_in_t0){
535 return delta_pos_in_t0 + delta_vel_in_t0 * msr_dt;
542 IMUBIAS Bias_t0 = IMUBIAS()){
547 Vector AccCorrected = Bias_t0.correctAccelerometer(msr_acc_t);
549 if (flag_use_body_P_sensor){
552 Vector GyroCorrected(Bias_t0.correctGyroscope(msr_gyro_t));
554 Vector body_omega_body = body_R_sensor * GyroCorrected;
557 body_t_a_body = body_R_sensor * AccCorrected - body_omega_body__cross * body_omega_body__cross *
body_P_sensor.translation().vector();
559 body_t_a_body = AccCorrected;
564 return delta_vel_in_t0 + R_t_to_t0.
matrix() * body_t_a_body * msr_dt;
570 IMUBIAS Bias_t0 = IMUBIAS()){
575 Vector GyroCorrected = Bias_t0.correctGyroscope(msr_gyro_t);
578 if (flag_use_body_P_sensor){
579 body_t_omega_body =
body_P_sensor.rotation().matrix() * GyroCorrected;
581 body_t_omega_body = GyroCorrected;
586 R_t_to_t0 = R_t_to_t0 *
Rot3::Expmap( body_t_omega_body*msr_dt );
594 Matrix cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
595 Matrix cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
596 Matrix cov_process = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
598 cov_process.block(0,0, 3,3) += cov_gyro;
599 cov_process.block(6,6, 3,3) += cov_acc;
608 cov_acc = ( gaussian_acc->R().transpose() * gaussian_acc->R() ).
inverse();
609 cov_gyro = ( gaussian_gyro->R().transpose() * gaussian_gyro->R() ).
inverse();
610 cov_process_without_acc_gyro = ( gaussian_process->R().transpose() * gaussian_process->R() ).
inverse();
619 0.0, 0.0, -1.0).finished();
624 0.0, 0.0, -1.0).finished();
627 Vector Pos_ENU = NED_to_ENU * Pos_NED;
628 Vector Vel_ENU = NED_to_ENU * Vel_NED;
629 Vector Pos_ENU_Initial = NED_to_ENU * Pos_NED_Initial;
638 g_NED = ENU_to_NED * g_ENU;
639 rho_NED = ENU_to_NED * rho_ENU;
640 omega_earth_NED = ENU_to_NED * omega_earth_ENU;
645 double R0 = 6.378388e6;
647 double Re(
R0*( 1-
e*(
sin( LatLonHeight_IC(0) ))*(
sin( LatLonHeight_IC(0) )) ) );
650 Vector delta_Pos_ENU(Pos_ENU - Pos_ENU_Initial);
651 double delta_lat(delta_Pos_ENU(1)/Re);
652 double delta_lon(delta_Pos_ENU(0)/(Re*
cos(LatLonHeight_IC(0))));
653 double lat_new(LatLonHeight_IC(0) + delta_lat);
654 double lon_new(LatLonHeight_IC(1) + delta_lon);
658 -
sin(lon_new),
cos(lon_new), 0.0,
664 -
sin(lat_new), 0.0,
cos(lat_new));
666 Rot3 UEN_to_ENU(0, 1, 0,
670 Rot3 R_ECEF_to_ENU( UEN_to_ENU *
C2 *
C1 );
673 omega_earth_ENU = R_ECEF_to_ENU.
matrix() * omega_earth_ECEF;
676 double height(LatLonHeight_IC(2));
677 double EQUA_RADIUS = 6378137.0;
678 double ECCENTRICITY = 0.0818191908426;
679 double e2(
pow(ECCENTRICITY,2) );
680 double den( 1-e2*
pow(
sin(lat_new),2) );
681 double Rm( (EQUA_RADIUS*(1-e2))/(
pow(den,(3/2)) ) );
682 double Rp( EQUA_RADIUS/(
sqrt(den) ) );
683 double Ro(
sqrt(Rp*Rm) );
684 double g0( 9.780318*( 1 + 5.3024
e-3 *
pow(
sin(lat_new),2) - 5.9
e-6 *
pow(
sin(2*lat_new),2) ) );
685 double g_calc( g0/(
pow(1 + height/Ro, 2) ) );
686 g_ENU = (
Vector(3) << 0.0, 0.0, -g_calc).finished();
690 double Ve( Vel_ENU(0) );
691 double Vn( Vel_ENU(1) );
692 double rho_E = -Vn/(Rm + height);
693 double rho_N = Ve/(Rp + height);
694 double rho_U = Ve*
tan(lat_new)/(Rp + height);
695 rho_ENU = (
Vector(3) << rho_E, rho_N, rho_U).finished();
707 #if GTSAM_ENABLE_BOOST_SERIALIZATION
709 friend class boost::serialization::access;
710 template<
class ARCHIVE>
711 void serialize(ARCHIVE & ar,
const unsigned int ) {
712 ar & boost::serialization::make_nvp(
"NonlinearFactor2",
713 boost::serialization::base_object<Base>(*
this));