abseil-cpp/absl/time/clock.cc
Go to the documentation of this file.
1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/time/clock.h"
16 
17 #include "absl/base/attributes.h"
18 #include "absl/base/optimization.h"
19 
20 #ifdef _WIN32
21 #include <windows.h>
22 #endif
23 
24 #include <algorithm>
25 #include <atomic>
26 #include <cerrno>
27 #include <cstdint>
28 #include <ctime>
29 #include <limits>
30 
31 #include "absl/base/internal/spinlock.h"
32 #include "absl/base/internal/unscaledcycleclock.h"
33 #include "absl/base/macros.h"
34 #include "absl/base/port.h"
35 #include "absl/base/thread_annotations.h"
36 
37 namespace absl {
39 Time Now() {
40  // TODO(bww): Get a timespec instead so we don't have to divide.
42  if (n >= 0) {
44  time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4));
45  }
47 }
49 } // namespace absl
50 
51 // Decide if we should use the fast GetCurrentTimeNanos() algorithm
52 // based on the cyclecounter, otherwise just get the time directly
53 // from the OS on every call. This can be chosen at compile-time via
54 // -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1]
55 #ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
56 #if ABSL_USE_UNSCALED_CYCLECLOCK
57 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 1
58 #else
59 #define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0
60 #endif
61 #endif
62 
63 #if defined(__APPLE__) || defined(_WIN32)
64 #include "absl/time/internal/get_current_time_chrono.inc"
65 #else
66 #include "absl/time/internal/get_current_time_posix.inc"
67 #endif
68 
69 // Allows override by test.
70 #ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM
71 #define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \
72  ::absl::time_internal::GetCurrentTimeNanosFromSystem()
73 #endif
74 
75 #if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
76 namespace absl {
80 } // namespace absl
81 #else // Use the cyclecounter-based implementation below.
82 
83 // Allows override by test.
84 #ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW
85 #define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \
86  ::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now()
87 #endif
88 
89 namespace absl {
91 namespace time_internal {
92 // This is a friend wrapper around UnscaledCycleClock::Now()
93 // (needed to access UnscaledCycleClock).
94 class UnscaledCycleClockWrapperForGetCurrentTime {
95  public:
97 };
98 } // namespace time_internal
99 
100 // uint64_t is used in this module to provide an extra bit in multiplications
101 
102 // ---------------------------------------------------------------------
103 // An implementation of reader-write locks that use no atomic ops in the read
104 // case. This is a generalization of Lamport's method for reading a multiword
105 // clock. Increment a word on each write acquisition, using the low-order bit
106 // as a spinlock; the word is the high word of the "clock". Readers read the
107 // high word, then all other data, then the high word again, and repeat the
108 // read if the reads of the high words yields different answers, or an odd
109 // value (either case suggests possible interference from a writer).
110 // Here we use a spinlock to ensure only one writer at a time, rather than
111 // spinning on the bottom bit of the word to benefit from SpinLock
112 // spin-delay tuning.
113 
114 // Acquire seqlock (*seq) and return the value to be written to unlock.
115 static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) {
116  uint64_t x = seq->fetch_add(1, std::memory_order_relaxed);
117 
118  // We put a release fence between update to *seq and writes to shared data.
119  // Thus all stores to shared data are effectively release operations and
120  // update to *seq above cannot be re-ordered past any of them. Note that
121  // this barrier is not for the fetch_add above. A release barrier for the
122  // fetch_add would be before it, not after.
123  std::atomic_thread_fence(std::memory_order_release);
124 
125  return x + 2; // original word plus 2
126 }
127 
128 // Release seqlock (*seq) by writing x to it---a value previously returned by
129 // SeqAcquire.
130 static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) {
131  // The unlock store to *seq must have release ordering so that all
132  // updates to shared data must finish before this store.
133  seq->store(x, std::memory_order_release); // release lock for readers
134 }
135 
136 // ---------------------------------------------------------------------
137 
138 // "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond.
139 enum { kScale = 30 };
140 
141 // The minimum interval between samples of the time base.
142 // We pick enough time to amortize the cost of the sample,
143 // to get a reasonably accurate cycle counter rate reading,
144 // and not so much that calculations will overflow 64-bits.
145 static const uint64_t kMinNSBetweenSamples = 2000 << 20;
146 
147 // We require that kMinNSBetweenSamples shifted by kScale
148 // have at least a bit left over for 64-bit calculations.
149 static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) ==
150  kMinNSBetweenSamples,
151  "cannot represent kMaxBetweenSamplesNSScaled");
152 
153 // data from a sample of the kernel's time value
154 struct TimeSampleAtomic {
155  std::atomic<uint64_t> raw_ns{0}; // raw kernel time
156  std::atomic<uint64_t> base_ns{0}; // our estimate of time
157  std::atomic<uint64_t> base_cycles{0}; // cycle counter reading
158  std::atomic<uint64_t> nsscaled_per_cycle{0}; // cycle period
159  // cycles before we'll sample again (a scaled reciprocal of the period,
160  // to avoid a division on the fast path).
161  std::atomic<uint64_t> min_cycles_per_sample{0};
162 };
163 // Same again, but with non-atomic types
164 struct TimeSample {
165  uint64_t raw_ns = 0; // raw kernel time
166  uint64_t base_ns = 0; // our estimate of time
167  uint64_t base_cycles = 0; // cycle counter reading
168  uint64_t nsscaled_per_cycle = 0; // cycle period
169  uint64_t min_cycles_per_sample = 0; // approx cycles before next sample
170 };
171 
172 struct ABSL_CACHELINE_ALIGNED TimeState {
173  std::atomic<uint64_t> seq{0};
174  TimeSampleAtomic last_sample; // the last sample; under seq
175 
176  // The following counters are used only by the test code.
177  int64_t stats_initializations{0};
178  int64_t stats_reinitializations{0};
179  int64_t stats_calibrations{0};
180  int64_t stats_slow_paths{0};
181  int64_t stats_fast_slow_paths{0};
182 
183  uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0};
184 
185  // Used by GetCurrentTimeNanosFromKernel().
186  // We try to read clock values at about the same time as the kernel clock.
187  // This value gets adjusted up or down as estimate of how long that should
188  // take, so we can reject attempts that take unusually long.
189  std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000};
190  // Number of times in a row we've seen a kernel time call take substantially
191  // less than approx_syscall_time_in_cycles.
192  std::atomic<uint32_t> kernel_time_seen_smaller{0};
193 
194  // A reader-writer lock protecting the static locations below.
195  // See SeqAcquire() and SeqRelease() above.
198 };
199 ABSL_CONST_INIT static TimeState time_state{};
200 
201 // Return the time in ns as told by the kernel interface. Place in *cycleclock
202 // the value of the cycleclock at about the time of the syscall.
203 // This call represents the time base that this module synchronizes to.
204 // Ensures that *cycleclock does not step back by up to (1 << 16) from
205 // last_cycleclock, to discard small backward counter steps. (Larger steps are
206 // assumed to be complete resyncs, which shouldn't happen. If they do, a full
207 // reinitialization of the outer algorithm should occur.)
208 static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock,
209  uint64_t *cycleclock)
210  ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
211  uint64_t local_approx_syscall_time_in_cycles = // local copy
212  time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed);
213 
214  int64_t current_time_nanos_from_system;
215  uint64_t before_cycles;
216  uint64_t after_cycles;
217  uint64_t elapsed_cycles;
218  int loops = 0;
219  do {
220  before_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
221  current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM();
222  after_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
223  // elapsed_cycles is unsigned, so is large on overflow
224  elapsed_cycles = after_cycles - before_cycles;
225  if (elapsed_cycles >= local_approx_syscall_time_in_cycles &&
226  ++loops == 20) { // clock changed frequencies? Back off.
227  loops = 0;
228  if (local_approx_syscall_time_in_cycles < 1000 * 1000) {
229  local_approx_syscall_time_in_cycles =
230  (local_approx_syscall_time_in_cycles + 1) << 1;
231  }
232  time_state.approx_syscall_time_in_cycles.store(
233  local_approx_syscall_time_in_cycles, std::memory_order_relaxed);
234  }
235  } while (elapsed_cycles >= local_approx_syscall_time_in_cycles ||
236  last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16));
237 
238  // Adjust approx_syscall_time_in_cycles to be within a factor of 2
239  // of the typical time to execute one iteration of the loop above.
240  if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) {
241  // measured time is no smaller than half current approximation
242  time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
243  } else if (time_state.kernel_time_seen_smaller.fetch_add(
244  1, std::memory_order_relaxed) >= 3) {
245  // smaller delays several times in a row; reduce approximation by 12.5%
246  const uint64_t new_approximation =
247  local_approx_syscall_time_in_cycles -
248  (local_approx_syscall_time_in_cycles >> 3);
249  time_state.approx_syscall_time_in_cycles.store(new_approximation,
250  std::memory_order_relaxed);
251  time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed);
252  }
253 
254  *cycleclock = after_cycles;
255  return current_time_nanos_from_system;
256 }
257 
258 static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD;
259 
260 // Read the contents of *atomic into *sample.
261 // Each field is read atomically, but to maintain atomicity between fields,
262 // the access must be done under a lock.
263 static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic,
264  struct TimeSample *sample) {
265  sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed);
266  sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed);
267  sample->nsscaled_per_cycle =
268  atomic->nsscaled_per_cycle.load(std::memory_order_relaxed);
269  sample->min_cycles_per_sample =
270  atomic->min_cycles_per_sample.load(std::memory_order_relaxed);
271  sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed);
272 }
273 
274 // Public routine.
275 // Algorithm: We wish to compute real time from a cycle counter. In normal
276 // operation, we construct a piecewise linear approximation to the kernel time
277 // source, using the cycle counter value. The start of each line segment is at
278 // the same point as the end of the last, but may have a different slope (that
279 // is, a different idea of the cycle counter frequency). Every couple of
280 // seconds, the kernel time source is sampled and compared with the current
281 // approximation. A new slope is chosen that, if followed for another couple
282 // of seconds, will correct the error at the current position. The information
283 // for a sample is in the "last_sample" struct. The linear approximation is
284 // estimated_time = last_sample.base_ns +
285 // last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles)
286 // (ns_per_cycle is actually stored in different units and scaled, to avoid
287 // overflow). The base_ns of the next linear approximation is the
288 // estimated_time using the last approximation; the base_cycles is the cycle
289 // counter value at that time; the ns_per_cycle is the number of ns per cycle
290 // measured since the last sample, but adjusted so that most of the difference
291 // between the estimated_time and the kernel time will be corrected by the
292 // estimated time to the next sample. In normal operation, this algorithm
293 // relies on:
294 // - the cycle counter and kernel time rates not changing a lot in a few
295 // seconds.
296 // - the client calling into the code often compared to a couple of seconds, so
297 // the time to the next correction can be estimated.
298 // Any time ns_per_cycle is not known, a major error is detected, or the
299 // assumption about frequent calls is violated, the implementation returns the
300 // kernel time. It records sufficient data that a linear approximation can
301 // resume a little later.
302 
304  // read the data from the "last_sample" struct (but don't need raw_ns yet)
305  // The reads of "seq" and test of the values emulate a reader lock.
306  uint64_t base_ns;
307  uint64_t base_cycles;
308  uint64_t nsscaled_per_cycle;
309  uint64_t min_cycles_per_sample;
310  uint64_t seq_read0;
311  uint64_t seq_read1;
312 
313  // If we have enough information to interpolate, the value returned will be
314  // derived from this cycleclock-derived time estimate. On some platforms
315  // (POWER) the function to retrieve this value has enough complexity to
316  // contribute to register pressure - reading it early before initializing
317  // the other pieces of the calculation minimizes spill/restore instructions,
318  // minimizing icache cost.
319  uint64_t now_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW();
320 
321  // Acquire pairs with the barrier in SeqRelease - if this load sees that
322  // store, the shared-data reads necessarily see that SeqRelease's updates
323  // to the same shared data.
324  seq_read0 = time_state.seq.load(std::memory_order_acquire);
325 
326  base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed);
327  base_cycles =
328  time_state.last_sample.base_cycles.load(std::memory_order_relaxed);
329  nsscaled_per_cycle =
330  time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed);
331  min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load(
332  std::memory_order_relaxed);
333 
334  // This acquire fence pairs with the release fence in SeqAcquire. Since it
335  // is sequenced between reads of shared data and seq_read1, the reads of
336  // shared data are effectively acquiring.
337  std::atomic_thread_fence(std::memory_order_acquire);
338 
339  // The shared-data reads are effectively acquire ordered, and the
340  // shared-data writes are effectively release ordered. Therefore if our
341  // shared-data reads see any of a particular update's shared-data writes,
342  // seq_read1 is guaranteed to see that update's SeqAcquire.
343  seq_read1 = time_state.seq.load(std::memory_order_relaxed);
344 
345  // Fast path. Return if min_cycles_per_sample has not yet elapsed since the
346  // last sample, and we read a consistent sample. The fast path activates
347  // only when min_cycles_per_sample is non-zero, which happens when we get an
348  // estimate for the cycle time. The predicate will fail if now_cycles <
349  // base_cycles, or if some other thread is in the slow path.
350  //
351  // Since we now read now_cycles before base_ns, it is possible for now_cycles
352  // to be less than base_cycles (if we were interrupted between those loads and
353  // last_sample was updated). This is harmless, because delta_cycles will wrap
354  // and report a time much much bigger than min_cycles_per_sample. In that case
355  // we will take the slow path.
356  uint64_t delta_cycles;
357  if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 &&
358  (delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) {
359  return base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale);
360  }
361  return GetCurrentTimeNanosSlowPath();
362 }
363 
364 // Return (a << kScale)/b.
365 // Zero is returned if b==0. Scaling is performed internally to
366 // preserve precision without overflow.
367 static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) {
368  // Find maximum safe_shift so that
369  // 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow.
370  int safe_shift = kScale;
371  while (((a << safe_shift) >> safe_shift) != a) {
372  safe_shift--;
373  }
374  uint64_t scaled_b = b >> (kScale - safe_shift);
375  uint64_t quotient = 0;
376  if (scaled_b != 0) {
377  quotient = (a << safe_shift) / scaled_b;
378  }
379  return quotient;
380 }
381 
382 static uint64_t UpdateLastSample(
383  uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles,
384  const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD;
385 
386 // The slow path of GetCurrentTimeNanos(). This is taken while gathering
387 // initial samples, when enough time has elapsed since the last sample, and if
388 // any other thread is writing to last_sample.
389 //
390 // Manually mark this 'noinline' to minimize stack frame size of the fast
391 // path. Without this, sometimes a compiler may inline this big block of code
392 // into the fast path. That causes lots of register spills and reloads that
393 // are unnecessary unless the slow path is taken.
394 //
395 // TODO(absl-team): Remove this attribute when our compiler is smart enough
396 // to do the right thing.
398 static int64_t GetCurrentTimeNanosSlowPath()
399  ABSL_LOCKS_EXCLUDED(time_state.lock) {
400  // Serialize access to slow-path. Fast-path readers are not blocked yet, and
401  // code below must not modify last_sample until the seqlock is acquired.
402  time_state.lock.Lock();
403 
404  // Sample the kernel time base. This is the definition of
405  // "now" if we take the slow path.
406  uint64_t now_cycles;
407  uint64_t now_ns =
408  GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles);
409  time_state.last_now_cycles = now_cycles;
410 
411  uint64_t estimated_base_ns;
412 
413  // ----------
414  // Read the "last_sample" values again; this time holding the write lock.
415  struct TimeSample sample;
416  ReadTimeSampleAtomic(&time_state.last_sample, &sample);
417 
418  // ----------
419  // Try running the fast path again; another thread may have updated the
420  // sample between our run of the fast path and the sample we just read.
421  uint64_t delta_cycles = now_cycles - sample.base_cycles;
422  if (delta_cycles < sample.min_cycles_per_sample) {
423  // Another thread updated the sample. This path does not take the seqlock
424  // so that blocked readers can make progress without blocking new readers.
425  estimated_base_ns = sample.base_ns +
426  ((delta_cycles * sample.nsscaled_per_cycle) >> kScale);
427  time_state.stats_fast_slow_paths++;
428  } else {
429  estimated_base_ns =
430  UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample);
431  }
432 
433  time_state.lock.Unlock();
434 
435  return estimated_base_ns;
436 }
437 
438 // Main part of the algorithm. Locks out readers, updates the approximation
439 // using the new sample from the kernel, and stores the result in last_sample
440 // for readers. Returns the new estimated time.
441 static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns,
442  uint64_t delta_cycles,
443  const struct TimeSample *sample)
444  ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) {
445  uint64_t estimated_base_ns = now_ns;
446  uint64_t lock_value =
447  SeqAcquire(&time_state.seq); // acquire seqlock to block readers
448 
449  // The 5s in the next if-statement limits the time for which we will trust
450  // the cycle counter and our last sample to give a reasonable result.
451  // Errors in the rate of the source clock can be multiplied by the ratio
452  // between this limit and kMinNSBetweenSamples.
453  if (sample->raw_ns == 0 || // no recent sample, or clock went backwards
454  sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns ||
455  now_ns < sample->raw_ns || now_cycles < sample->base_cycles) {
456  // record this sample, and forget any previously known slope.
457  time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
458  time_state.last_sample.base_ns.store(estimated_base_ns,
459  std::memory_order_relaxed);
460  time_state.last_sample.base_cycles.store(now_cycles,
461  std::memory_order_relaxed);
462  time_state.last_sample.nsscaled_per_cycle.store(0,
463  std::memory_order_relaxed);
464  time_state.last_sample.min_cycles_per_sample.store(
465  0, std::memory_order_relaxed);
466  time_state.stats_initializations++;
467  } else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns &&
468  sample->base_cycles + 50 < now_cycles) {
469  // Enough time has passed to compute the cycle time.
470  if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate.
471  // Compute time from counter reading, but avoiding overflow
472  // delta_cycles may be larger than on the fast path.
473  uint64_t estimated_scaled_ns;
474  int s = -1;
475  do {
476  s++;
477  estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle;
478  } while (estimated_scaled_ns / sample->nsscaled_per_cycle !=
479  (delta_cycles >> s));
480  estimated_base_ns = sample->base_ns +
481  (estimated_scaled_ns >> (kScale - s));
482  }
483 
484  // Compute the assumed cycle time kMinNSBetweenSamples ns into the future
485  // assuming the cycle counter rate stays the same as the last interval.
486  uint64_t ns = now_ns - sample->raw_ns;
487  uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles);
488 
489  uint64_t assumed_next_sample_delta_cycles =
490  SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle);
491 
492  int64_t diff_ns = now_ns - estimated_base_ns; // estimate low by this much
493 
494  // We want to set nsscaled_per_cycle so that our estimate of the ns time
495  // at the assumed cycle time is the assumed ns time.
496  // That is, we want to set nsscaled_per_cycle so:
497  // kMinNSBetweenSamples + diff_ns ==
498  // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
499  // But we wish to damp oscillations, so instead correct only most
500  // of our current error, by solving:
501  // kMinNSBetweenSamples + diff_ns - (diff_ns / 16) ==
502  // (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale
503  ns = kMinNSBetweenSamples + diff_ns - (diff_ns / 16);
504  uint64_t new_nsscaled_per_cycle =
505  SafeDivideAndScale(ns, assumed_next_sample_delta_cycles);
506  if (new_nsscaled_per_cycle != 0 &&
507  diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) {
508  // record the cycle time measurement
509  time_state.last_sample.nsscaled_per_cycle.store(
510  new_nsscaled_per_cycle, std::memory_order_relaxed);
511  uint64_t new_min_cycles_per_sample =
512  SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle);
513  time_state.last_sample.min_cycles_per_sample.store(
514  new_min_cycles_per_sample, std::memory_order_relaxed);
515  time_state.stats_calibrations++;
516  } else { // something went wrong; forget the slope
517  time_state.last_sample.nsscaled_per_cycle.store(
518  0, std::memory_order_relaxed);
519  time_state.last_sample.min_cycles_per_sample.store(
520  0, std::memory_order_relaxed);
521  estimated_base_ns = now_ns;
522  time_state.stats_reinitializations++;
523  }
524  time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed);
525  time_state.last_sample.base_ns.store(estimated_base_ns,
526  std::memory_order_relaxed);
527  time_state.last_sample.base_cycles.store(now_cycles,
528  std::memory_order_relaxed);
529  } else {
530  // have a sample, but no slope; waiting for enough time for a calibration
531  time_state.stats_slow_paths++;
532  }
533 
534  SeqRelease(&time_state.seq, lock_value); // release the readers
535 
536  return estimated_base_ns;
537 }
539 } // namespace absl
540 #endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS
541 
542 namespace absl {
544 namespace {
545 
546 // Returns the maximum duration that SleepOnce() can sleep for.
548 #ifdef _WIN32
549  // Windows Sleep() takes unsigned long argument in milliseconds.
550  return absl::Milliseconds(
551  std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int)
552 #else
554 #endif
555 }
556 
557 // Sleeps for the given duration.
558 // REQUIRES: to_sleep <= MaxSleep().
559 void SleepOnce(absl::Duration to_sleep) {
560 #ifdef _WIN32
561  Sleep(to_sleep / absl::Milliseconds(1));
562 #else
563  struct timespec sleep_time = absl::ToTimespec(to_sleep);
564  while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) {
565  // Ignore signals and wait for the full interval to elapse.
566  }
567 #endif
568 }
569 
570 } // namespace
572 } // namespace absl
573 
574 extern "C" {
575 
577  absl::Duration duration) {
578  while (duration > absl::ZeroDuration()) {
579  absl::Duration to_sleep = std::min(duration, absl::MaxSleep());
580  absl::SleepOnce(to_sleep);
581  duration -= to_sleep;
582  }
583 }
584 
585 } // extern "C"
const
#define const
Definition: bloaty/third_party/zlib/zconf.h:230
ABSL_CONST_INIT
#define ABSL_CONST_INIT
Definition: abseil-cpp/absl/base/attributes.h:716
absl::ZeroDuration
constexpr Duration ZeroDuration()
Definition: third_party/abseil-cpp/absl/time/time.h:308
absl::ABSL_NAMESPACE_BEGIN::SleepOnce
void SleepOnce(absl::Duration to_sleep)
Definition: abseil-cpp/absl/time/clock.cc:559
absl::Time
Definition: third_party/abseil-cpp/absl/time/time.h:642
absl::time_internal::MakeDuration
constexpr Duration MakeDuration(int64_t hi, uint32_t lo)
Definition: third_party/abseil-cpp/absl/time/time.h:1392
absl::Nanoseconds
constexpr Duration Nanoseconds(T n)
Definition: third_party/abseil-cpp/absl/time/time.h:407
absl::base_internal::SpinLock
Definition: third_party/abseil-cpp/absl/base/internal/spinlock.h:52
nanosleep
int nanosleep(const struct timespec *req, struct timespec *rem)
Definition: os390-syscalls.c:385
absl::ABSL_NAMESPACE_BEGIN::MaxSleep
constexpr absl::Duration MaxSleep()
Definition: abseil-cpp/absl/time/clock.cc:547
absl::FormatConversionChar::s
@ s
a
int a
Definition: abseil-cpp/absl/container/internal/hash_policy_traits_test.cc:88
absl::kConstInit
@ kConstInit
Definition: abseil-cpp/absl/base/const_init.h:70
ABSL_NAMESPACE_END
#define ABSL_NAMESPACE_END
Definition: third_party/abseil-cpp/absl/base/config.h:171
gen_build_yaml.struct
def struct(**kwargs)
Definition: test/core/end2end/gen_build_yaml.py:30
ABSL_ATTRIBUTE_NOINLINE
#define ABSL_ATTRIBUTE_NOINLINE
Definition: abseil-cpp/absl/base/attributes.h:112
absl::GetCurrentTimeNanos
ABSL_NAMESPACE_BEGIN int64_t GetCurrentTimeNanos()
Definition: abseil-cpp/absl/time/clock.cc:78
absl::Milliseconds
constexpr Duration Milliseconds(T n)
Definition: third_party/abseil-cpp/absl/time/time.h:415
ABSL_NAMESPACE_BEGIN
#define ABSL_NAMESPACE_BEGIN
Definition: third_party/abseil-cpp/absl/base/config.h:170
int64_t
signed __int64 int64_t
Definition: stdint-msvc2008.h:89
max
int max
Definition: bloaty/third_party/zlib/examples/enough.c:170
ABSL_EXCLUSIVE_LOCKS_REQUIRED
#define ABSL_EXCLUSIVE_LOCKS_REQUIRED(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:145
uint64_t
unsigned __int64 uint64_t
Definition: stdint-msvc2008.h:90
absl::Duration
Definition: third_party/abseil-cpp/absl/time/time.h:159
x
int x
Definition: bloaty/third_party/googletest/googlemock/test/gmock-matchers_test.cc:3610
min
#define min(a, b)
Definition: qsort.h:83
b
uint64_t b
Definition: abseil-cpp/absl/container/internal/layout_test.cc:53
ABSL_INTERNAL_C_SYMBOL
#define ABSL_INTERNAL_C_SYMBOL(x)
Definition: third_party/abseil-cpp/absl/base/config.h:172
n
int n
Definition: abseil-cpp/absl/container/btree_test.cc:1080
AbslInternalSleepFor
ABSL_ATTRIBUTE_WEAK void ABSL_INTERNAL_C_SYMBOL() AbslInternalSleepFor(absl::Duration duration)
Definition: abseil-cpp/absl/time/clock.cc:576
absl::Seconds
constexpr Duration Seconds(T n)
Definition: third_party/abseil-cpp/absl/time/time.h:419
ABSL_ATTRIBUTE_WEAK
bool absl_internal_cordz_disabled ABSL_ATTRIBUTE_WEAK
Definition: bloaty/third_party/abseil-cpp/absl/strings/internal/cordz_functions.cc:31
absl::Now
ABSL_NAMESPACE_BEGIN Time Now()
Definition: abseil-cpp/absl/time/clock.cc:39
absl::base_internal::SCHEDULE_KERNEL_ONLY
@ SCHEDULE_KERNEL_ONLY
Definition: abseil-cpp/absl/base/internal/scheduling_mode.h:50
absl::ToTimespec
timespec ToTimespec(Duration d)
Definition: abseil-cpp/absl/time/duration.cc:606
ABSL_CACHELINE_ALIGNED
#define ABSL_CACHELINE_ALIGNED
Definition: abseil-cpp/absl/base/optimization.h:150
ABSL_LOCKS_EXCLUDED
#define ABSL_LOCKS_EXCLUDED(...)
Definition: abseil-cpp/absl/base/thread_annotations.h:163
ABSL_ATTRIBUTE_COLD
#define ABSL_ATTRIBUTE_COLD
Definition: abseil-cpp/absl/base/attributes.h:463
ns
static int64_t ns
Definition: bloaty/third_party/re2/util/benchmark.cc:43
absl::ABSL_GUARDED_BY
struct absl::SynchWaitParams ABSL_GUARDED_BY[kNSynchEvent]
absl
Definition: abseil-cpp/absl/algorithm/algorithm.h:31
absl::time_internal::FromUnixDuration
constexpr Time FromUnixDuration(Duration d)
Definition: third_party/abseil-cpp/absl/time/time.h:1450
GET_CURRENT_TIME_NANOS_FROM_SYSTEM
#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM()
Definition: abseil-cpp/absl/time/clock.cc:71


grpc
Author(s):
autogenerated on Fri May 16 2025 02:57:55