multivariate_gaussian.h
Go to the documentation of this file.
1 /*********************************************************************
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2009, Willow Garage, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  *
11  * * Redistributions of source code must retain the above copyright
12  * notice, this list of conditions and the following disclaimer.
13  * * Redistributions in binary form must reproduce the above
14  * copyright notice, this list of conditions and the following
15  * disclaimer in the documentation and/or other materials provided
16  * with the distribution.
17  * * Neither the name of Willow Garage nor the names of its
18  * contributors may be used to endorse or promote products derived
19  * from this software without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
24  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
25  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
26  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
27  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
28  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
29  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
31  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  *********************************************************************/
34 
35 /* Author: Mrinal Kalakrishnan */
36 
37 #pragma once
38 
39 #include <eigen3/Eigen/Core>
40 #include <eigen3/Eigen/Cholesky>
41 #include <boost/random/variate_generator.hpp>
42 #include <boost/random/normal_distribution.hpp>
43 #include <boost/random/mersenne_twister.hpp>
44 #include <cstdlib>
45 
46 namespace chomp
47 {
51 class MultivariateGaussian
52 {
53 public:
54  template <typename Derived1, typename Derived2>
55  MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance);
56 
57  template <typename Derived>
58  void sample(Eigen::MatrixBase<Derived>& output);
59 
60 private:
61  Eigen::VectorXd mean_;
62  Eigen::MatrixXd covariance_;
63  Eigen::MatrixXd covariance_cholesky_;
65  int size_;
66  boost::mt19937 rng_;
67  boost::normal_distribution<> normal_dist_;
68  boost::variate_generator<boost::mt19937, boost::normal_distribution<> > gaussian_;
69 };
70 
72 
73 template <typename Derived1, typename Derived2>
74 MultivariateGaussian::MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean,
75  const Eigen::MatrixBase<Derived2>& covariance)
76  : mean_(mean)
77  , covariance_(covariance)
78  , covariance_cholesky_(covariance_.llt().matrixL())
79  , rng_()
80  , normal_dist_(0.0, 1.0)
81  , gaussian_(rng_, normal_dist_)
82 {
83  rng_.seed(rand());
84  size_ = mean.rows();
85 }
86 
87 template <typename Derived>
88 void MultivariateGaussian::sample(Eigen::MatrixBase<Derived>& output)
89 {
90  for (int i = 0; i < size_; ++i)
91  output(i) = gaussian_();
92  output = mean_ + covariance_cholesky_ * output;
93 }
94 } // namespace chomp
chomp::MultivariateGaussian::covariance_cholesky_
Eigen::MatrixXd covariance_cholesky_
Definition: multivariate_gaussian.h:127
chomp
Definition: chomp_cost.h:43
chomp::MultivariateGaussian::rng_
boost::mt19937 rng_
Definition: multivariate_gaussian.h:130
chomp::MultivariateGaussian::sample
void sample(Eigen::MatrixBase< Derived > &output)
Definition: multivariate_gaussian.h:120
chomp::MultivariateGaussian::covariance_
Eigen::MatrixXd covariance_
Definition: multivariate_gaussian.h:126
chomp::MultivariateGaussian::MultivariateGaussian
MultivariateGaussian(const Eigen::MatrixBase< Derived1 > &mean, const Eigen::MatrixBase< Derived2 > &covariance)
Definition: multivariate_gaussian.h:106
chomp::MultivariateGaussian::mean_
Eigen::VectorXd mean_
Definition: multivariate_gaussian.h:125
chomp::MultivariateGaussian::normal_dist_
boost::normal_distribution normal_dist_
Definition: multivariate_gaussian.h:131
chomp::MultivariateGaussian::gaussian_
boost::variate_generator< boost::mt19937, boost::normal_distribution<> > gaussian_
Definition: multivariate_gaussian.h:132
chomp::MultivariateGaussian::size_
int size_
Definition: multivariate_gaussian.h:129


chomp_motion_planner
Author(s): Gil Jones , Mrinal Kalakrishnan
autogenerated on Sat May 3 2025 02:26:05