Classes | |
| class | DiscreteCell |
| class | NDTMap |
| class | NormalDistribution |
| class | OccupancyGrid |
Functions | |
| Optional[NormalDistribution] | fit_normal_distribution (np.ndarray points, float min_variance=5e-3) |
| np.ndarray | grid_to_point_cloud (OccupancyGrid occupancy_grid) |
| NDTMap | point_cloud_to_ndt (np.ndarray pc, cell_size=1.0) |
Variables | |
| frozen | |
| message | |
| Optional[NormalDistribution] beluga_ros.conversion_utils.fit_normal_distribution | ( | np.ndarray | points, |
| float | min_variance = 5e-3 |
||
| ) |
Fit a normal distribution to a set of 2D points. A minimum variance in each dimension will be enforced to avoid singularities.
Definition at line 244 of file conversion_utils.py.
| np.ndarray beluga_ros.conversion_utils.grid_to_point_cloud | ( | OccupancyGrid | occupancy_grid | ) |
Convert an OccupancyGrid's occupied cells to a 2D point cloud. Uses the center of the cell for the conversion to reduce max error.
Definition at line 225 of file conversion_utils.py.
| NDTMap beluga_ros.conversion_utils.point_cloud_to_ndt | ( | np.ndarray | pc, |
cell_size = 1.0 |
|||
| ) |
Convert a 2D point cloud into a NDT map representation.
Does so by clustering points in 2D cells of {cell_size} * {cell_size} meters^2
and fitting a normal distribution when applicable.
Definition at line 269 of file conversion_utils.py.
| beluga_ros.conversion_utils.frozen |
Definition at line 34 of file conversion_utils.py.
| beluga_ros.conversion_utils.message |
Definition at line 29 of file conversion_utils.py.