transformations.py
Go to the documentation of this file.
1 # -*- coding: utf-8 -*-
2 # transformations.py
3 
4 # Copyright (c) 2006, Christoph Gohlke
5 # Copyright (c) 2006-2009, The Regents of the University of California
6 # All rights reserved.
7 #
8 # Redistribution and use in source and binary forms, with or without
9 # modification, are permitted provided that the following conditions are met:
10 #
11 # * Redistributions of source code must retain the above copyright
12 # notice, this list of conditions and the following disclaimer.
13 # * Redistributions in binary form must reproduce the above copyright
14 # notice, this list of conditions and the following disclaimer in the
15 # documentation and/or other materials provided with the distribution.
16 # * Neither the name of the copyright holders nor the names of any
17 # contributors may be used to endorse or promote products derived
18 # from this software without specific prior written permission.
19 #
20 # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21 # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24 # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 # POSSIBILITY OF SUCH DAMAGE.
31 
32 """Homogeneous Transformation Matrices and Quaternions.
33 
34 A library for calculating 4x4 matrices for translating, rotating, reflecting,
35 scaling, shearing, projecting, orthogonalizing, and superimposing arrays of
36 3D homogeneous coordinates as well as for converting between rotation matrices,
37 Euler angles, and quaternions. Also includes an Arcball control object and
38 functions to decompose transformation matrices.
39 
40 :Authors:
41  `Christoph Gohlke <http://www.lfd.uci.edu/~gohlke/>`__,
42  Laboratory for Fluorescence Dynamics, University of California, Irvine
43 
44 :Version: 20090418
45 
46 Requirements
47 ------------
48 
49 * `Python 2.6 <http://www.python.org>`__
50 * `Numpy 1.3 <http://numpy.scipy.org>`__
51 * `transformations.c 20090418 <http://www.lfd.uci.edu/~gohlke/>`__
52  (optional implementation of some functions in C)
53 
54 Notes
55 -----
56 
57 Matrices (M) can be inverted using numpy.linalg.inv(M), concatenated using
58 numpy.dot(M0, M1), or used to transform homogeneous coordinates (v) using
59 numpy.dot(M, v) for shape (4, \*) "point of arrays", respectively
60 numpy.dot(v, M.T) for shape (\*, 4) "array of points".
61 
62 Calculations are carried out with numpy.float64 precision.
63 
64 This Python implementation is not optimized for speed.
65 
66 Vector, point, quaternion, and matrix function arguments are expected to be
67 "array like", i.e. tuple, list, or numpy arrays.
68 
69 Return types are numpy arrays unless specified otherwise.
70 
71 Angles are in radians unless specified otherwise.
72 
73 Quaternions ix+jy+kz+w are represented as [x, y, z, w].
74 
75 Use the transpose of transformation matrices for OpenGL glMultMatrixd().
76 
77 A triple of Euler angles can be applied/interpreted in 24 ways, which can
78 be specified using a 4 character string or encoded 4-tuple:
79 
80  *Axes 4-string*: e.g. 'sxyz' or 'ryxy'
81 
82  - first character : rotations are applied to 's'tatic or 'r'otating frame
83  - remaining characters : successive rotation axis 'x', 'y', or 'z'
84 
85  *Axes 4-tuple*: e.g. (0, 0, 0, 0) or (1, 1, 1, 1)
86 
87  - inner axis: code of axis ('x':0, 'y':1, 'z':2) of rightmost matrix.
88  - parity : even (0) if inner axis 'x' is followed by 'y', 'y' is followed
89  by 'z', or 'z' is followed by 'x'. Otherwise odd (1).
90  - repetition : first and last axis are same (1) or different (0).
91  - frame : rotations are applied to static (0) or rotating (1) frame.
92 
93 References
94 ----------
95 
96 (1) Matrices and transformations. Ronald Goldman.
97  In "Graphics Gems I", pp 472-475. Morgan Kaufmann, 1990.
98 (2) More matrices and transformations: shear and pseudo-perspective.
99  Ronald Goldman. In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
100 (3) Decomposing a matrix into simple transformations. Spencer Thomas.
101  In "Graphics Gems II", pp 320-323. Morgan Kaufmann, 1991.
102 (4) Recovering the data from the transformation matrix. Ronald Goldman.
103  In "Graphics Gems II", pp 324-331. Morgan Kaufmann, 1991.
104 (5) Euler angle conversion. Ken Shoemake.
105  In "Graphics Gems IV", pp 222-229. Morgan Kaufmann, 1994.
106 (6) Arcball rotation control. Ken Shoemake.
107  In "Graphics Gems IV", pp 175-192. Morgan Kaufmann, 1994.
108 (7) Representing attitude: Euler angles, unit quaternions, and rotation
109  vectors. James Diebel. 2006.
110 (8) A discussion of the solution for the best rotation to relate two sets
111  of vectors. W Kabsch. Acta Cryst. 1978. A34, 827-828.
112 (9) Closed-form solution of absolute orientation using unit quaternions.
113  BKP Horn. J Opt Soc Am A. 1987. 4(4), 629-642.
114 (10) Quaternions. Ken Shoemake.
115  http://www.sfu.ca/~jwa3/cmpt461/files/quatut.pdf
116 (11) From quaternion to matrix and back. JMP van Waveren. 2005.
117  http://www.intel.com/cd/ids/developer/asmo-na/eng/293748.htm
118 (12) Uniform random rotations. Ken Shoemake.
119  In "Graphics Gems III", pp 124-132. Morgan Kaufmann, 1992.
120 
121 
122 Examples
123 --------
124 
125 >>> alpha, beta, gamma = 0.123, -1.234, 2.345
126 >>> origin, xaxis, yaxis, zaxis = (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)
127 >>> I = identity_matrix()
128 >>> Rx = rotation_matrix(alpha, xaxis)
129 >>> Ry = rotation_matrix(beta, yaxis)
130 >>> Rz = rotation_matrix(gamma, zaxis)
131 >>> R = concatenate_matrices(Rx, Ry, Rz)
132 >>> euler = euler_from_matrix(R, 'rxyz')
133 >>> numpy.allclose([alpha, beta, gamma], euler)
134 True
135 >>> Re = euler_matrix(alpha, beta, gamma, 'rxyz')
136 >>> is_same_transform(R, Re)
137 True
138 >>> al, be, ga = euler_from_matrix(Re, 'rxyz')
139 >>> is_same_transform(Re, euler_matrix(al, be, ga, 'rxyz'))
140 True
141 >>> qx = quaternion_about_axis(alpha, xaxis)
142 >>> qy = quaternion_about_axis(beta, yaxis)
143 >>> qz = quaternion_about_axis(gamma, zaxis)
144 >>> q = quaternion_multiply(qx, qy)
145 >>> q = quaternion_multiply(q, qz)
146 >>> Rq = quaternion_matrix(q)
147 >>> is_same_transform(R, Rq)
148 True
149 >>> S = scale_matrix(1.23, origin)
150 >>> T = translation_matrix((1, 2, 3))
151 >>> Z = shear_matrix(beta, xaxis, origin, zaxis)
152 >>> R = random_rotation_matrix(numpy.random.rand(3))
153 >>> M = concatenate_matrices(T, R, Z, S)
154 >>> scale, shear, angles, trans, persp = decompose_matrix(M)
155 >>> numpy.allclose(scale, 1.23)
156 True
157 >>> numpy.allclose(trans, (1, 2, 3))
158 True
159 >>> numpy.allclose(shear, (0, math.tan(beta), 0))
160 True
161 >>> is_same_transform(R, euler_matrix(axes='sxyz', *angles))
162 True
163 >>> M1 = compose_matrix(scale, shear, angles, trans, persp)
164 >>> is_same_transform(M, M1)
165 True
166 
167 """
168 
169 from __future__ import division
170 
171 import warnings
172 import math
173 
174 import numpy
175 
176 # Documentation in HTML format can be generated with Epydoc
177 __docformat__ = "restructuredtext en"
178 
179 
180 def identity_matrix():
181  """Return 4x4 identity/unit matrix.
182 
183  >>> I = identity_matrix()
184  >>> numpy.allclose(I, numpy.dot(I, I))
185  True
186  >>> numpy.sum(I), numpy.trace(I)
187  (4.0, 4.0)
188  >>> numpy.allclose(I, numpy.identity(4, dtype=numpy.float64))
189  True
190 
191  """
192  return numpy.identity(4, dtype=numpy.float64)
193 
194 
195 def translation_matrix(direction):
196  """Return matrix to translate by direction vector.
197 
198  >>> v = numpy.random.random(3) - 0.5
199  >>> numpy.allclose(v, translation_matrix(v)[:3, 3])
200  True
201 
202  """
203  M = numpy.identity(4)
204  M[:3, 3] = direction[:3]
205  return M
206 
207 
208 def translation_from_matrix(matrix):
209  """Return translation vector from translation matrix.
210 
211  >>> v0 = numpy.random.random(3) - 0.5
213  >>> numpy.allclose(v0, v1)
214  True
215 
216  """
217  return numpy.array(matrix, copy=False)[:3, 3].copy()
218 
219 
220 def reflection_matrix(point, normal):
221  """Return matrix to mirror at plane defined by point and normal vector.
222 
223  >>> v0 = numpy.random.random(4) - 0.5
224  >>> v0[3] = 1.0
225  >>> v1 = numpy.random.random(3) - 0.5
226  >>> R = reflection_matrix(v0, v1)
227  >>> numpy.allclose(2., numpy.trace(R))
228  True
229  >>> numpy.allclose(v0, numpy.dot(R, v0))
230  True
231  >>> v2 = v0.copy()
232  >>> v2[:3] += v1
233  >>> v3 = v0.copy()
234  >>> v2[:3] -= v1
235  >>> numpy.allclose(v2, numpy.dot(R, v3))
236  True
237 
238  """
239  normal = unit_vector(normal[:3])
240  M = numpy.identity(4)
241  M[:3, :3] -= 2.0 * numpy.outer(normal, normal)
242  M[:3, 3] = (2.0 * numpy.dot(point[:3], normal)) * normal
243  return M
244 
245 
246 def reflection_from_matrix(matrix):
247  """Return mirror plane point and normal vector from reflection matrix.
248 
249  >>> v0 = numpy.random.random(3) - 0.5
250  >>> v1 = numpy.random.random(3) - 0.5
251  >>> M0 = reflection_matrix(v0, v1)
252  >>> point, normal = reflection_from_matrix(M0)
253  >>> M1 = reflection_matrix(point, normal)
254  >>> is_same_transform(M0, M1)
255  True
256 
257  """
258  M = numpy.array(matrix, dtype=numpy.float64, copy=False)
259  # normal: unit eigenvector corresponding to eigenvalue -1
260  l, V = numpy.linalg.eig(M[:3, :3])
261  i = numpy.where(abs(numpy.real(l) + 1.0) < 1e-8)[0]
262  if not len(i):
263  raise ValueError("no unit eigenvector corresponding to eigenvalue -1")
264  normal = numpy.real(V[:, i[0]]).squeeze()
265  # point: any unit eigenvector corresponding to eigenvalue 1
266  l, V = numpy.linalg.eig(M)
267  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
268  if not len(i):
269  raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
270  point = numpy.real(V[:, i[-1]]).squeeze()
271  point /= point[3]
272  return point, normal
273 
274 
275 def rotation_matrix(angle, direction, point=None):
276  """Return matrix to rotate about axis defined by point and direction.
277 
278  >>> angle = (random.random() - 0.5) * (2*math.pi)
279  >>> direc = numpy.random.random(3) - 0.5
280  >>> point = numpy.random.random(3) - 0.5
281  >>> R0 = rotation_matrix(angle, direc, point)
282  >>> R1 = rotation_matrix(angle-2*math.pi, direc, point)
283  >>> is_same_transform(R0, R1)
284  True
285  >>> R0 = rotation_matrix(angle, direc, point)
286  >>> R1 = rotation_matrix(-angle, -direc, point)
287  >>> is_same_transform(R0, R1)
288  True
289  >>> I = numpy.identity(4, numpy.float64)
290  >>> numpy.allclose(I, rotation_matrix(math.pi*2, direc))
291  True
292  >>> numpy.allclose(2., numpy.trace(rotation_matrix(math.pi/2,
293  ... direc, point)))
294  True
295 
296  """
297  sina = math.sin(angle)
298  cosa = math.cos(angle)
299  direction = unit_vector(direction[:3])
300  # rotation matrix around unit vector
301  R = numpy.array(((cosa, 0.0, 0.0),
302  (0.0, cosa, 0.0),
303  (0.0, 0.0, cosa)), dtype=numpy.float64)
304  R += numpy.outer(direction, direction) * (1.0 - cosa)
305  direction *= sina
306  R += numpy.array((( 0.0, -direction[2], direction[1]),
307  ( direction[2], 0.0, -direction[0]),
308  (-direction[1], direction[0], 0.0)),
309  dtype=numpy.float64)
310  M = numpy.identity(4)
311  M[:3, :3] = R
312  if point is not None:
313  # rotation not around origin
314  point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
315  M[:3, 3] = point - numpy.dot(R, point)
316  return M
317 
318 
319 def rotation_from_matrix(matrix):
320  """Return rotation angle and axis from rotation matrix.
321 
322  >>> angle = (random.random() - 0.5) * (2*math.pi)
323  >>> direc = numpy.random.random(3) - 0.5
324  >>> point = numpy.random.random(3) - 0.5
325  >>> R0 = rotation_matrix(angle, direc, point)
326  >>> angle, direc, point = rotation_from_matrix(R0)
327  >>> R1 = rotation_matrix(angle, direc, point)
328  >>> is_same_transform(R0, R1)
329  True
330 
331  """
332  R = numpy.array(matrix, dtype=numpy.float64, copy=False)
333  R33 = R[:3, :3]
334  # direction: unit eigenvector of R33 corresponding to eigenvalue of 1
335  l, W = numpy.linalg.eig(R33.T)
336  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
337  if not len(i):
338  raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
339  direction = numpy.real(W[:, i[-1]]).squeeze()
340  # point: unit eigenvector of R33 corresponding to eigenvalue of 1
341  l, Q = numpy.linalg.eig(R)
342  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
343  if not len(i):
344  raise ValueError("no unit eigenvector corresponding to eigenvalue 1")
345  point = numpy.real(Q[:, i[-1]]).squeeze()
346  point /= point[3]
347  # rotation angle depending on direction
348  cosa = (numpy.trace(R33) - 1.0) / 2.0
349  if abs(direction[2]) > 1e-8:
350  sina = (R[1, 0] + (cosa-1.0)*direction[0]*direction[1]) / direction[2]
351  elif abs(direction[1]) > 1e-8:
352  sina = (R[0, 2] + (cosa-1.0)*direction[0]*direction[2]) / direction[1]
353  else:
354  sina = (R[2, 1] + (cosa-1.0)*direction[1]*direction[2]) / direction[0]
355  angle = math.atan2(sina, cosa)
356  return angle, direction, point
357 
358 
359 def scale_matrix(factor, origin=None, direction=None):
360  """Return matrix to scale by factor around origin in direction.
361 
362  Use factor -1 for point symmetry.
363 
364  >>> v = (numpy.random.rand(4, 5) - 0.5) * 20.0
365  >>> v[3] = 1.0
366  >>> S = scale_matrix(-1.234)
367  >>> numpy.allclose(numpy.dot(S, v)[:3], -1.234*v[:3])
368  True
369  >>> factor = random.random() * 10 - 5
370  >>> origin = numpy.random.random(3) - 0.5
371  >>> direct = numpy.random.random(3) - 0.5
372  >>> S = scale_matrix(factor, origin)
373  >>> S = scale_matrix(factor, origin, direct)
374 
375  """
376  if direction is None:
377  # uniform scaling
378  M = numpy.array(((factor, 0.0, 0.0, 0.0),
379  (0.0, factor, 0.0, 0.0),
380  (0.0, 0.0, factor, 0.0),
381  (0.0, 0.0, 0.0, 1.0)), dtype=numpy.float64)
382  if origin is not None:
383  M[:3, 3] = origin[:3]
384  M[:3, 3] *= 1.0 - factor
385  else:
386  # nonuniform scaling
387  direction = unit_vector(direction[:3])
388  factor = 1.0 - factor
389  M = numpy.identity(4)
390  M[:3, :3] -= factor * numpy.outer(direction, direction)
391  if origin is not None:
392  M[:3, 3] = (factor * numpy.dot(origin[:3], direction)) * direction
393  return M
394 
395 
396 def scale_from_matrix(matrix):
397  """Return scaling factor, origin and direction from scaling matrix.
398 
399  >>> factor = random.random() * 10 - 5
400  >>> origin = numpy.random.random(3) - 0.5
401  >>> direct = numpy.random.random(3) - 0.5
402  >>> S0 = scale_matrix(factor, origin)
403  >>> factor, origin, direction = scale_from_matrix(S0)
404  >>> S1 = scale_matrix(factor, origin, direction)
405  >>> is_same_transform(S0, S1)
406  True
407  >>> S0 = scale_matrix(factor, origin, direct)
408  >>> factor, origin, direction = scale_from_matrix(S0)
409  >>> S1 = scale_matrix(factor, origin, direction)
410  >>> is_same_transform(S0, S1)
411  True
412 
413  """
414  M = numpy.array(matrix, dtype=numpy.float64, copy=False)
415  M33 = M[:3, :3]
416  factor = numpy.trace(M33) - 2.0
417  try:
418  # direction: unit eigenvector corresponding to eigenvalue factor
419  l, V = numpy.linalg.eig(M33)
420  i = numpy.where(abs(numpy.real(l) - factor) < 1e-8)[0][0]
421  direction = numpy.real(V[:, i]).squeeze()
422  direction /= vector_norm(direction)
423  except IndexError:
424  # uniform scaling
425  factor = (factor + 2.0) / 3.0
426  direction = None
427  # origin: any eigenvector corresponding to eigenvalue 1
428  l, V = numpy.linalg.eig(M)
429  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
430  if not len(i):
431  raise ValueError("no eigenvector corresponding to eigenvalue 1")
432  origin = numpy.real(V[:, i[-1]]).squeeze()
433  origin /= origin[3]
434  return factor, origin, direction
435 
436 
437 def projection_matrix(point, normal, direction=None,
438  perspective=None, pseudo=False):
439  """Return matrix to project onto plane defined by point and normal.
440 
441  Using either perspective point, projection direction, or none of both.
442 
443  If pseudo is True, perspective projections will preserve relative depth
444  such that Perspective = dot(Orthogonal, PseudoPerspective).
445 
446  >>> P = projection_matrix((0, 0, 0), (1, 0, 0))
447  >>> numpy.allclose(P[1:, 1:], numpy.identity(4)[1:, 1:])
448  True
449  >>> point = numpy.random.random(3) - 0.5
450  >>> normal = numpy.random.random(3) - 0.5
451  >>> direct = numpy.random.random(3) - 0.5
452  >>> persp = numpy.random.random(3) - 0.5
453  >>> P0 = projection_matrix(point, normal)
454  >>> P1 = projection_matrix(point, normal, direction=direct)
455  >>> P2 = projection_matrix(point, normal, perspective=persp)
456  >>> P3 = projection_matrix(point, normal, perspective=persp, pseudo=True)
457  >>> is_same_transform(P2, numpy.dot(P0, P3))
458  True
459  >>> P = projection_matrix((3, 0, 0), (1, 1, 0), (1, 0, 0))
460  >>> v0 = (numpy.random.rand(4, 5) - 0.5) * 20.0
461  >>> v0[3] = 1.0
462  >>> v1 = numpy.dot(P, v0)
463  >>> numpy.allclose(v1[1], v0[1])
464  True
465  >>> numpy.allclose(v1[0], 3.0-v1[1])
466  True
467 
468  """
469  M = numpy.identity(4)
470  point = numpy.array(point[:3], dtype=numpy.float64, copy=False)
471  normal = unit_vector(normal[:3])
472  if perspective is not None:
473  # perspective projection
474  perspective = numpy.array(perspective[:3], dtype=numpy.float64,
475  copy=False)
476  M[0, 0] = M[1, 1] = M[2, 2] = numpy.dot(perspective-point, normal)
477  M[:3, :3] -= numpy.outer(perspective, normal)
478  if pseudo:
479  # preserve relative depth
480  M[:3, :3] -= numpy.outer(normal, normal)
481  M[:3, 3] = numpy.dot(point, normal) * (perspective+normal)
482  else:
483  M[:3, 3] = numpy.dot(point, normal) * perspective
484  M[3, :3] = -normal
485  M[3, 3] = numpy.dot(perspective, normal)
486  elif direction is not None:
487  # parallel projection
488  direction = numpy.array(direction[:3], dtype=numpy.float64, copy=False)
489  scale = numpy.dot(direction, normal)
490  M[:3, :3] -= numpy.outer(direction, normal) / scale
491  M[:3, 3] = direction * (numpy.dot(point, normal) / scale)
492  else:
493  # orthogonal projection
494  M[:3, :3] -= numpy.outer(normal, normal)
495  M[:3, 3] = numpy.dot(point, normal) * normal
496  return M
497 
498 
499 def projection_from_matrix(matrix, pseudo=False):
500  """Return projection plane and perspective point from projection matrix.
501 
502  Return values are same as arguments for projection_matrix function:
503  point, normal, direction, perspective, and pseudo.
504 
505  >>> point = numpy.random.random(3) - 0.5
506  >>> normal = numpy.random.random(3) - 0.5
507  >>> direct = numpy.random.random(3) - 0.5
508  >>> persp = numpy.random.random(3) - 0.5
509  >>> P0 = projection_matrix(point, normal)
510  >>> result = projection_from_matrix(P0)
511  >>> P1 = projection_matrix(*result)
512  >>> is_same_transform(P0, P1)
513  True
514  >>> P0 = projection_matrix(point, normal, direct)
515  >>> result = projection_from_matrix(P0)
516  >>> P1 = projection_matrix(*result)
517  >>> is_same_transform(P0, P1)
518  True
519  >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=False)
520  >>> result = projection_from_matrix(P0, pseudo=False)
521  >>> P1 = projection_matrix(*result)
522  >>> is_same_transform(P0, P1)
523  True
524  >>> P0 = projection_matrix(point, normal, perspective=persp, pseudo=True)
525  >>> result = projection_from_matrix(P0, pseudo=True)
526  >>> P1 = projection_matrix(*result)
527  >>> is_same_transform(P0, P1)
528  True
529 
530  """
531  M = numpy.array(matrix, dtype=numpy.float64, copy=False)
532  M33 = M[:3, :3]
533  l, V = numpy.linalg.eig(M)
534  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
535  if not pseudo and len(i):
536  # point: any eigenvector corresponding to eigenvalue 1
537  point = numpy.real(V[:, i[-1]]).squeeze()
538  point /= point[3]
539  # direction: unit eigenvector corresponding to eigenvalue 0
540  l, V = numpy.linalg.eig(M33)
541  i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
542  if not len(i):
543  raise ValueError("no eigenvector corresponding to eigenvalue 0")
544  direction = numpy.real(V[:, i[0]]).squeeze()
545  direction /= vector_norm(direction)
546  # normal: unit eigenvector of M33.T corresponding to eigenvalue 0
547  l, V = numpy.linalg.eig(M33.T)
548  i = numpy.where(abs(numpy.real(l)) < 1e-8)[0]
549  if len(i):
550  # parallel projection
551  normal = numpy.real(V[:, i[0]]).squeeze()
552  normal /= vector_norm(normal)
553  return point, normal, direction, None, False
554  else:
555  # orthogonal projection, where normal equals direction vector
556  return point, direction, None, None, False
557  else:
558  # perspective projection
559  i = numpy.where(abs(numpy.real(l)) > 1e-8)[0]
560  if not len(i):
561  raise ValueError(
562  "no eigenvector not corresponding to eigenvalue 0")
563  point = numpy.real(V[:, i[-1]]).squeeze()
564  point /= point[3]
565  normal = - M[3, :3]
566  perspective = M[:3, 3] / numpy.dot(point[:3], normal)
567  if pseudo:
568  perspective -= normal
569  return point, normal, None, perspective, pseudo
570 
571 
572 def clip_matrix(left, right, bottom, top, near, far, perspective=False):
573  """Return matrix to obtain normalized device coordinates from frustrum.
574 
575  The frustrum bounds are axis-aligned along x (left, right),
576  y (bottom, top) and z (near, far).
577 
578  Normalized device coordinates are in range [-1, 1] if coordinates are
579  inside the frustrum.
580 
581  If perspective is True the frustrum is a truncated pyramid with the
582  perspective point at origin and direction along z axis, otherwise an
583  orthographic canonical view volume (a box).
584 
585  Homogeneous coordinates transformed by the perspective clip matrix
586  need to be dehomogenized (devided by w coordinate).
587 
588  >>> frustrum = numpy.random.rand(6)
589  >>> frustrum[1] += frustrum[0]
590  >>> frustrum[3] += frustrum[2]
591  >>> frustrum[5] += frustrum[4]
592  >>> M = clip_matrix(*frustrum, perspective=False)
593  >>> numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
594  array([-1., -1., -1., 1.])
595  >>> numpy.dot(M, [frustrum[1], frustrum[3], frustrum[5], 1.0])
596  array([ 1., 1., 1., 1.])
597  >>> M = clip_matrix(*frustrum, perspective=True)
598  >>> v = numpy.dot(M, [frustrum[0], frustrum[2], frustrum[4], 1.0])
599  >>> v / v[3]
600  array([-1., -1., -1., 1.])
601  >>> v = numpy.dot(M, [frustrum[1], frustrum[3], frustrum[4], 1.0])
602  >>> v / v[3]
603  array([ 1., 1., -1., 1.])
604 
605  """
606  if left >= right or bottom >= top or near >= far:
607  raise ValueError("invalid frustrum")
608  if perspective:
609  if near <= _EPS:
610  raise ValueError("invalid frustrum: near <= 0")
611  t = 2.0 * near
612  M = ((-t/(right-left), 0.0, (right+left)/(right-left), 0.0),
613  (0.0, -t/(top-bottom), (top+bottom)/(top-bottom), 0.0),
614  (0.0, 0.0, -(far+near)/(far-near), t*far/(far-near)),
615  (0.0, 0.0, -1.0, 0.0))
616  else:
617  M = ((2.0/(right-left), 0.0, 0.0, (right+left)/(left-right)),
618  (0.0, 2.0/(top-bottom), 0.0, (top+bottom)/(bottom-top)),
619  (0.0, 0.0, 2.0/(far-near), (far+near)/(near-far)),
620  (0.0, 0.0, 0.0, 1.0))
621  return numpy.array(M, dtype=numpy.float64)
622 
623 
624 def shear_matrix(angle, direction, point, normal):
625  """Return matrix to shear by angle along direction vector on shear plane.
626 
627  The shear plane is defined by a point and normal vector. The direction
628  vector must be orthogonal to the plane's normal vector.
629 
630  A point P is transformed by the shear matrix into P" such that
631  the vector P-P" is parallel to the direction vector and its extent is
632  given by the angle of P-P'-P", where P' is the orthogonal projection
633  of P onto the shear plane.
634 
635  >>> angle = (random.random() - 0.5) * 4*math.pi
636  >>> direct = numpy.random.random(3) - 0.5
637  >>> point = numpy.random.random(3) - 0.5
638  >>> normal = numpy.cross(direct, numpy.random.random(3))
639  >>> S = shear_matrix(angle, direct, point, normal)
640  >>> numpy.allclose(1.0, numpy.linalg.det(S))
641  True
642 
643  """
644  normal = unit_vector(normal[:3])
645  direction = unit_vector(direction[:3])
646  if abs(numpy.dot(normal, direction)) > 1e-6:
647  raise ValueError("direction and normal vectors are not orthogonal")
648  angle = math.tan(angle)
649  M = numpy.identity(4)
650  M[:3, :3] += angle * numpy.outer(direction, normal)
651  M[:3, 3] = -angle * numpy.dot(point[:3], normal) * direction
652  return M
653 
654 
655 def shear_from_matrix(matrix):
656  """Return shear angle, direction and plane from shear matrix.
657 
658  >>> angle = (random.random() - 0.5) * 4*math.pi
659  >>> direct = numpy.random.random(3) - 0.5
660  >>> point = numpy.random.random(3) - 0.5
661  >>> normal = numpy.cross(direct, numpy.random.random(3))
662  >>> S0 = shear_matrix(angle, direct, point, normal)
663  >>> angle, direct, point, normal = shear_from_matrix(S0)
664  >>> S1 = shear_matrix(angle, direct, point, normal)
665  >>> is_same_transform(S0, S1)
666  True
667 
668  """
669  M = numpy.array(matrix, dtype=numpy.float64, copy=False)
670  M33 = M[:3, :3]
671  # normal: cross independent eigenvectors corresponding to the eigenvalue 1
672  l, V = numpy.linalg.eig(M33)
673  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-4)[0]
674  if len(i) < 2:
675  raise ValueError("No two linear independent eigenvectors found {}".format(l))
676  V = numpy.real(V[:, i]).squeeze().T
677  lenorm = -1.0
678  for i0, i1 in ((0, 1), (0, 2), (1, 2)):
679  n = numpy.cross(V[i0], V[i1])
680  l = vector_norm(n)
681  if l > lenorm:
682  lenorm = l
683  normal = n
684  normal /= lenorm
685  # direction and angle
686  direction = numpy.dot(M33 - numpy.identity(3), normal)
687  angle = vector_norm(direction)
688  direction /= angle
689  angle = math.atan(angle)
690  # point: eigenvector corresponding to eigenvalue 1
691  l, V = numpy.linalg.eig(M)
692  i = numpy.where(abs(numpy.real(l) - 1.0) < 1e-8)[0]
693  if not len(i):
694  raise ValueError("no eigenvector corresponding to eigenvalue 1")
695  point = numpy.real(V[:, i[-1]]).squeeze()
696  point /= point[3]
697  return angle, direction, point, normal
698 
699 
700 def decompose_matrix(matrix):
701  """Return sequence of transformations from transformation matrix.
702 
703  matrix : array_like
704  Non-degenerative homogeneous transformation matrix
705 
706  Return tuple of:
707  scale : vector of 3 scaling factors
708  shear : list of shear factors for x-y, x-z, y-z axes
709  angles : list of Euler angles about static x, y, z axes
710  translate : translation vector along x, y, z axes
711  perspective : perspective partition of matrix
712 
713  Raise ValueError if matrix is of wrong type or degenerative.
714 
715  >>> T0 = translation_matrix((1, 2, 3))
716  >>> scale, shear, angles, trans, persp = decompose_matrix(T0)
717  >>> T1 = translation_matrix(trans)
718  >>> numpy.allclose(T0, T1)
719  True
720  >>> S = scale_matrix(0.123)
721  >>> scale, shear, angles, trans, persp = decompose_matrix(S)
722  >>> scale[0]
723  0.123
724  >>> R0 = euler_matrix(1, 2, 3)
725  >>> scale, shear, angles, trans, persp = decompose_matrix(R0)
726  >>> R1 = euler_matrix(*angles)
727  >>> numpy.allclose(R0, R1)
728  True
729 
730  """
731  M = numpy.array(matrix, dtype=numpy.float64, copy=True).T
732  if abs(M[3, 3]) < _EPS:
733  raise ValueError("M[3, 3] is zero")
734  M /= M[3, 3]
735  P = M.copy()
736  P[:, 3] = 0, 0, 0, 1
737  if not numpy.linalg.det(P):
738  raise ValueError("Matrix is singular")
739 
740  scale = numpy.zeros((3, ), dtype=numpy.float64)
741  shear = [0, 0, 0]
742  angles = [0, 0, 0]
743 
744  if any(abs(M[:3, 3]) > _EPS):
745  perspective = numpy.dot(M[:, 3], numpy.linalg.inv(P.T))
746  M[:, 3] = 0, 0, 0, 1
747  else:
748  perspective = numpy.array((0, 0, 0, 1), dtype=numpy.float64)
749 
750  translate = M[3, :3].copy()
751  M[3, :3] = 0
752 
753  row = M[:3, :3].copy()
754  scale[0] = vector_norm(row[0])
755  row[0] /= scale[0]
756  shear[0] = numpy.dot(row[0], row[1])
757  row[1] -= row[0] * shear[0]
758  scale[1] = vector_norm(row[1])
759  row[1] /= scale[1]
760  shear[0] /= scale[1]
761  shear[1] = numpy.dot(row[0], row[2])
762  row[2] -= row[0] * shear[1]
763  shear[2] = numpy.dot(row[1], row[2])
764  row[2] -= row[1] * shear[2]
765  scale[2] = vector_norm(row[2])
766  row[2] /= scale[2]
767  shear[1:] /= scale[2]
768 
769  if numpy.dot(row[0], numpy.cross(row[1], row[2])) < 0:
770  scale *= -1
771  row *= -1
772 
773  angles[1] = math.asin(-row[0, 2])
774  if math.cos(angles[1]):
775  angles[0] = math.atan2(row[1, 2], row[2, 2])
776  angles[2] = math.atan2(row[0, 1], row[0, 0])
777  else:
778  #angles[0] = math.atan2(row[1, 0], row[1, 1])
779  angles[0] = math.atan2(-row[2, 1], row[1, 1])
780  angles[2] = 0.0
781 
782  return scale, shear, angles, translate, perspective
783 
784 
785 def compose_matrix(scale=None, shear=None, angles=None, translate=None,
786  perspective=None):
787  """Return transformation matrix from sequence of transformations.
788 
789  This is the inverse of the decompose_matrix function.
790 
791  Sequence of transformations:
792  scale : vector of 3 scaling factors
793  shear : list of shear factors for x-y, x-z, y-z axes
794  angles : list of Euler angles about static x, y, z axes
795  translate : translation vector along x, y, z axes
796  perspective : perspective partition of matrix
797 
798  >>> scale = numpy.random.random(3) - 0.5
799  >>> shear = numpy.random.random(3) - 0.5
800  >>> angles = (numpy.random.random(3) - 0.5) * (2*math.pi)
801  >>> trans = numpy.random.random(3) - 0.5
802  >>> persp = numpy.random.random(4) - 0.5
803  >>> M0 = compose_matrix(scale, shear, angles, trans, persp)
804  >>> result = decompose_matrix(M0)
805  >>> M1 = compose_matrix(*result)
806  >>> is_same_transform(M0, M1)
807  True
808 
809  """
810  M = numpy.identity(4)
811  if perspective is not None:
812  P = numpy.identity(4)
813  P[3, :] = perspective[:4]
814  M = numpy.dot(M, P)
815  if translate is not None:
816  T = numpy.identity(4)
817  T[:3, 3] = translate[:3]
818  M = numpy.dot(M, T)
819  if angles is not None:
820  R = euler_matrix(angles[0], angles[1], angles[2], 'sxyz')
821  M = numpy.dot(M, R)
822  if shear is not None:
823  Z = numpy.identity(4)
824  Z[1, 2] = shear[2]
825  Z[0, 2] = shear[1]
826  Z[0, 1] = shear[0]
827  M = numpy.dot(M, Z)
828  if scale is not None:
829  S = numpy.identity(4)
830  S[0, 0] = scale[0]
831  S[1, 1] = scale[1]
832  S[2, 2] = scale[2]
833  M = numpy.dot(M, S)
834  M /= M[3, 3]
835  return M
836 
837 
838 def orthogonalization_matrix(lengths, angles):
839  """Return orthogonalization matrix for crystallographic cell coordinates.
840 
841  Angles are expected in degrees.
842 
843  The de-orthogonalization matrix is the inverse.
844 
845  >>> O = orthogonalization_matrix((10., 10., 10.), (90., 90., 90.))
846  >>> numpy.allclose(O[:3, :3], numpy.identity(3, float) * 10)
847  True
848  >>> O = orthogonalization_matrix([9.8, 12.0, 15.5], [87.2, 80.7, 69.7])
849  >>> numpy.allclose(numpy.sum(O), 43.063229)
850  True
851 
852  """
853  a, b, c = lengths
854  angles = numpy.radians(angles)
855  sina, sinb, _ = numpy.sin(angles)
856  cosa, cosb, cosg = numpy.cos(angles)
857  co = (cosa * cosb - cosg) / (sina * sinb)
858  return numpy.array((
859  ( a*sinb*math.sqrt(1.0-co*co), 0.0, 0.0, 0.0),
860  (-a*sinb*co, b*sina, 0.0, 0.0),
861  ( a*cosb, b*cosa, c, 0.0),
862  ( 0.0, 0.0, 0.0, 1.0)),
863  dtype=numpy.float64)
864 
865 
866 def superimposition_matrix(v0, v1, scaling=False, usesvd=True):
867  """Return matrix to transform given vector set into second vector set.
868 
869  v0 and v1 are shape (3, \*) or (4, \*) arrays of at least 3 vectors.
870 
871  If usesvd is True, the weighted sum of squared deviations (RMSD) is
872  minimized according to the algorithm by W. Kabsch [8]. Otherwise the
873  quaternion based algorithm by B. Horn [9] is used (slower when using
874  this Python implementation).
875 
876  The returned matrix performs rotation, translation and uniform scaling
877  (if specified).
878 
879  >>> v0 = numpy.random.rand(3, 10)
880  >>> M = superimposition_matrix(v0, v0)
881  >>> numpy.allclose(M, numpy.identity(4))
882  True
883  >>> R = random_rotation_matrix(numpy.random.random(3))
884  >>> v0 = ((1,0,0), (0,1,0), (0,0,1), (1,1,1))
885  >>> v1 = numpy.dot(R, v0)
886  >>> M = superimposition_matrix(v0, v1)
887  >>> numpy.allclose(v1, numpy.dot(M, v0))
888  True
889  >>> v0 = (numpy.random.rand(4, 100) - 0.5) * 20.0
890  >>> v0[3] = 1.0
891  >>> v1 = numpy.dot(R, v0)
892  >>> M = superimposition_matrix(v0, v1)
893  >>> numpy.allclose(v1, numpy.dot(M, v0))
894  True
895  >>> S = scale_matrix(random.random())
896  >>> T = translation_matrix(numpy.random.random(3)-0.5)
897  >>> M = concatenate_matrices(T, R, S)
898  >>> v1 = numpy.dot(M, v0)
899  >>> v0[:3] += numpy.random.normal(0.0, 1e-9, 300).reshape(3, -1)
900  >>> M = superimposition_matrix(v0, v1, scaling=True)
901  >>> numpy.allclose(v1, numpy.dot(M, v0))
902  True
903  >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
904  >>> numpy.allclose(v1, numpy.dot(M, v0))
905  True
906  >>> v = numpy.empty((4, 100, 3), dtype=numpy.float64)
907  >>> v[:, :, 0] = v0
908  >>> M = superimposition_matrix(v0, v1, scaling=True, usesvd=False)
909  >>> numpy.allclose(v1, numpy.dot(M, v[:, :, 0]))
910  True
911 
912  """
913  v0 = numpy.array(v0, dtype=numpy.float64, copy=False)[:3]
914  v1 = numpy.array(v1, dtype=numpy.float64, copy=False)[:3]
915 
916  if v0.shape != v1.shape or v0.shape[1] < 3:
917  raise ValueError("Vector sets are of wrong shape or type.")
918 
919  # move centroids to origin
920  t0 = numpy.mean(v0, axis=1)
921  t1 = numpy.mean(v1, axis=1)
922  v0 = v0 - t0.reshape(3, 1)
923  v1 = v1 - t1.reshape(3, 1)
924 
925  if usesvd:
926  # Singular Value Decomposition of covariance matrix
927  u, s, vh = numpy.linalg.svd(numpy.dot(v1, v0.T))
928  # rotation matrix from SVD orthonormal bases
929  R = numpy.dot(u, vh)
930  if numpy.linalg.det(R) < 0.0:
931  # R does not constitute right handed system
932  R -= numpy.outer(u[:, 2], vh[2, :]*2.0)
933  s[-1] *= -1.0
934  # homogeneous transformation matrix
935  M = numpy.identity(4)
936  M[:3, :3] = R
937  else:
938  # compute symmetric matrix N
939  xx, yy, zz = numpy.sum(v0 * v1, axis=1)
940  xy, yz, zx = numpy.sum(v0 * numpy.roll(v1, -1, axis=0), axis=1)
941  xz, yx, zy = numpy.sum(v0 * numpy.roll(v1, -2, axis=0), axis=1)
942  N = ((xx+yy+zz, yz-zy, zx-xz, xy-yx),
943  (yz-zy, xx-yy-zz, xy+yx, zx+xz),
944  (zx-xz, xy+yx, -xx+yy-zz, yz+zy),
945  (xy-yx, zx+xz, yz+zy, -xx-yy+zz))
946  # quaternion: eigenvector corresponding to most positive eigenvalue
947  l, V = numpy.linalg.eig(N)
948  q = V[:, numpy.argmax(l)]
949  q /= vector_norm(q) # unit quaternion
950  q = numpy.roll(q, -1) # move w component to end
951  # homogeneous transformation matrix
952  M = quaternion_matrix(q)
953 
954  # scale: ratio of rms deviations from centroid
955  if scaling:
956  v0 *= v0
957  v1 *= v1
958  M[:3, :3] *= math.sqrt(numpy.sum(v1) / numpy.sum(v0))
959 
960  # translation
961  M[:3, 3] = t1
962  T = numpy.identity(4)
963  T[:3, 3] = -t0
964  M = numpy.dot(M, T)
965  return M
966 
967 
968 def euler_matrix(ai, aj, ak, axes='sxyz'):
969  """Return homogeneous rotation matrix from Euler angles and axis sequence.
970 
971  ai, aj, ak : Euler's roll, pitch and yaw angles
972  axes : One of 24 axis sequences as string or encoded tuple
973 
974  >>> R = euler_matrix(1, 2, 3, 'syxz')
975  >>> numpy.allclose(numpy.sum(R[0]), -1.34786452)
976  True
977  >>> R = euler_matrix(1, 2, 3, (0, 1, 0, 1))
978  >>> numpy.allclose(numpy.sum(R[0]), -0.383436184)
979  True
980  >>> ai, aj, ak = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
981  >>> for axes in _AXES2TUPLE.keys():
982  ... R = euler_matrix(ai, aj, ak, axes)
983  >>> for axes in _TUPLE2AXES.keys():
984  ... R = euler_matrix(ai, aj, ak, axes)
985 
986  """
987  try:
988  firstaxis, parity, repetition, frame = _AXES2TUPLE[axes]
989  except (AttributeError, KeyError):
990  _ = _TUPLE2AXES[axes]
991  firstaxis, parity, repetition, frame = axes
992 
993  i = firstaxis
994  j = _NEXT_AXIS[i+parity]
995  k = _NEXT_AXIS[i-parity+1]
996 
997  if frame:
998  ai, ak = ak, ai
999  if parity:
1000  ai, aj, ak = -ai, -aj, -ak
1001 
1002  si, sj, sk = math.sin(ai), math.sin(aj), math.sin(ak)
1003  ci, cj, ck = math.cos(ai), math.cos(aj), math.cos(ak)
1004  cc, cs = ci*ck, ci*sk
1005  sc, ss = si*ck, si*sk
1006 
1007  M = numpy.identity(4)
1008  if repetition:
1009  M[i, i] = cj
1010  M[i, j] = sj*si
1011  M[i, k] = sj*ci
1012  M[j, i] = sj*sk
1013  M[j, j] = -cj*ss+cc
1014  M[j, k] = -cj*cs-sc
1015  M[k, i] = -sj*ck
1016  M[k, j] = cj*sc+cs
1017  M[k, k] = cj*cc-ss
1018  else:
1019  M[i, i] = cj*ck
1020  M[i, j] = sj*sc-cs
1021  M[i, k] = sj*cc+ss
1022  M[j, i] = cj*sk
1023  M[j, j] = sj*ss+cc
1024  M[j, k] = sj*cs-sc
1025  M[k, i] = -sj
1026  M[k, j] = cj*si
1027  M[k, k] = cj*ci
1028  return M
1029 
1030 
1031 def euler_from_matrix(matrix, axes='sxyz'):
1032  """Return Euler angles from rotation matrix for specified axis sequence.
1033 
1034  axes : One of 24 axis sequences as string or encoded tuple
1035 
1036  Note that many Euler angle triplets can describe one matrix.
1037 
1038  >>> R0 = euler_matrix(1, 2, 3, 'syxz')
1039  >>> al, be, ga = euler_from_matrix(R0, 'syxz')
1040  >>> R1 = euler_matrix(al, be, ga, 'syxz')
1041  >>> numpy.allclose(R0, R1)
1042  True
1043  >>> angles = (4.0*math.pi) * (numpy.random.random(3) - 0.5)
1044  >>> for axes in _AXES2TUPLE.keys():
1045  ... R0 = euler_matrix(axes=axes, *angles)
1046  ... R1 = euler_matrix(axes=axes, *euler_from_matrix(R0, axes))
1047  ... if not numpy.allclose(R0, R1): print axes, "failed"
1048 
1049  """
1050  try:
1051  firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1052  except (AttributeError, KeyError):
1053  _ = _TUPLE2AXES[axes]
1054  firstaxis, parity, repetition, frame = axes
1055 
1056  i = firstaxis
1057  j = _NEXT_AXIS[i+parity]
1058  k = _NEXT_AXIS[i-parity+1]
1059 
1060  M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:3, :3]
1061  if repetition:
1062  sy = math.sqrt(M[i, j]*M[i, j] + M[i, k]*M[i, k])
1063  if sy > _EPS:
1064  ax = math.atan2( M[i, j], M[i, k])
1065  ay = math.atan2( sy, M[i, i])
1066  az = math.atan2( M[j, i], -M[k, i])
1067  else:
1068  ax = math.atan2(-M[j, k], M[j, j])
1069  ay = math.atan2( sy, M[i, i])
1070  az = 0.0
1071  else:
1072  cy = math.sqrt(M[i, i]*M[i, i] + M[j, i]*M[j, i])
1073  if cy > _EPS:
1074  ax = math.atan2( M[k, j], M[k, k])
1075  ay = math.atan2(-M[k, i], cy)
1076  az = math.atan2( M[j, i], M[i, i])
1077  else:
1078  ax = math.atan2(-M[j, k], M[j, j])
1079  ay = math.atan2(-M[k, i], cy)
1080  az = 0.0
1081 
1082  if parity:
1083  ax, ay, az = -ax, -ay, -az
1084  if frame:
1085  ax, az = az, ax
1086  return ax, ay, az
1087 
1088 
1089 def euler_from_quaternion(quaternion, axes='sxyz'):
1090  """Return Euler angles from quaternion for specified axis sequence.
1091 
1092  >>> angles = euler_from_quaternion([0.06146124, 0, 0, 0.99810947])
1093  >>> numpy.allclose(angles, [0.123, 0, 0])
1094  True
1095 
1096  """
1097  return euler_from_matrix(quaternion_matrix(quaternion), axes)
1098 
1099 
1100 def quaternion_from_euler(ai, aj, ak, axes='sxyz'):
1101  """Return quaternion from Euler angles and axis sequence.
1102 
1103  ai, aj, ak : Euler's roll, pitch and yaw angles
1104  axes : One of 24 axis sequences as string or encoded tuple
1105 
1106  >>> q = quaternion_from_euler(1, 2, 3, 'ryxz')
1107  >>> numpy.allclose(q, [0.310622, -0.718287, 0.444435, 0.435953])
1108  True
1109 
1110  """
1111  try:
1112  firstaxis, parity, repetition, frame = _AXES2TUPLE[axes.lower()]
1113  except (AttributeError, KeyError):
1114  _ = _TUPLE2AXES[axes]
1115  firstaxis, parity, repetition, frame = axes
1116 
1117  i = firstaxis
1118  j = _NEXT_AXIS[i+parity]
1119  k = _NEXT_AXIS[i-parity+1]
1120 
1121  if frame:
1122  ai, ak = ak, ai
1123  if parity:
1124  aj = -aj
1125 
1126  ai /= 2.0
1127  aj /= 2.0
1128  ak /= 2.0
1129  ci = math.cos(ai)
1130  si = math.sin(ai)
1131  cj = math.cos(aj)
1132  sj = math.sin(aj)
1133  ck = math.cos(ak)
1134  sk = math.sin(ak)
1135  cc = ci*ck
1136  cs = ci*sk
1137  sc = si*ck
1138  ss = si*sk
1139 
1140  quaternion = numpy.empty((4, ), dtype=numpy.float64)
1141  if repetition:
1142  quaternion[i] = cj*(cs + sc)
1143  quaternion[j] = sj*(cc + ss)
1144  quaternion[k] = sj*(cs - sc)
1145  quaternion[3] = cj*(cc - ss)
1146  else:
1147  quaternion[i] = cj*sc - sj*cs
1148  quaternion[j] = cj*ss + sj*cc
1149  quaternion[k] = cj*cs - sj*sc
1150  quaternion[3] = cj*cc + sj*ss
1151  if parity:
1152  quaternion[j] *= -1
1153 
1154  return quaternion
1155 
1156 
1157 def quaternion_about_axis(angle, axis):
1158  """Return quaternion for rotation about axis.
1159 
1160  >>> q = quaternion_about_axis(0.123, (1, 0, 0))
1161  >>> numpy.allclose(q, [0.06146124, 0, 0, 0.99810947])
1162  True
1163 
1164  """
1165  quaternion = numpy.zeros((4, ), dtype=numpy.float64)
1166  quaternion[:3] = axis[:3]
1167  qlen = vector_norm(quaternion)
1168  if qlen > _EPS:
1169  quaternion *= math.sin(angle/2.0) / qlen
1170  quaternion[3] = math.cos(angle/2.0)
1171  return quaternion
1172 
1173 
1174 def quaternion_matrix(quaternion):
1175  """Return homogeneous rotation matrix from quaternion.
1176 
1177  >>> R = quaternion_matrix([0.06146124, 0, 0, 0.99810947])
1178  >>> numpy.allclose(R, rotation_matrix(0.123, (1, 0, 0)))
1179  True
1180 
1181  """
1182  q = numpy.array(quaternion[:4], dtype=numpy.float64, copy=True)
1183  nq = numpy.dot(q, q)
1184  if nq < _EPS:
1185  return numpy.identity(4)
1186  q *= math.sqrt(2.0 / nq)
1187  q = numpy.outer(q, q)
1188  return numpy.array((
1189  (1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], 0.0),
1190  ( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], 0.0),
1191  ( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], 0.0),
1192  ( 0.0, 0.0, 0.0, 1.0)
1193  ), dtype=numpy.float64)
1194 
1195 
1196 def quaternion_from_matrix(matrix):
1197  """Return quaternion from rotation matrix.
1198 
1199  >>> R = rotation_matrix(0.123, (1, 2, 3))
1200  >>> q = quaternion_from_matrix(R)
1201  >>> numpy.allclose(q, [0.0164262, 0.0328524, 0.0492786, 0.9981095])
1202  True
1203 
1204  """
1205  q = numpy.empty((4, ), dtype=numpy.float64)
1206  M = numpy.array(matrix, dtype=numpy.float64, copy=False)[:4, :4]
1207  t = numpy.trace(M)
1208  if t > M[3, 3]:
1209  q[3] = t
1210  q[2] = M[1, 0] - M[0, 1]
1211  q[1] = M[0, 2] - M[2, 0]
1212  q[0] = M[2, 1] - M[1, 2]
1213  else:
1214  i, j, k = 0, 1, 2
1215  if M[1, 1] > M[0, 0]:
1216  i, j, k = 1, 2, 0
1217  if M[2, 2] > M[i, i]:
1218  i, j, k = 2, 0, 1
1219  t = M[i, i] - (M[j, j] + M[k, k]) + M[3, 3]
1220  q[i] = t
1221  q[j] = M[i, j] + M[j, i]
1222  q[k] = M[k, i] + M[i, k]
1223  q[3] = M[k, j] - M[j, k]
1224  q *= 0.5 / math.sqrt(t * M[3, 3])
1225  return q
1226 
1227 
1228 def quaternion_multiply(quaternion1, quaternion0):
1229  """Return multiplication of two quaternions.
1230 
1231  >>> q = quaternion_multiply([1, -2, 3, 4], [-5, 6, 7, 8])
1232  >>> numpy.allclose(q, [-44, -14, 48, 28])
1233  True
1234 
1235  """
1236  x0, y0, z0, w0 = quaternion0
1237  x1, y1, z1, w1 = quaternion1
1238  return numpy.array((
1239  x1*w0 + y1*z0 - z1*y0 + w1*x0,
1240  -x1*z0 + y1*w0 + z1*x0 + w1*y0,
1241  x1*y0 - y1*x0 + z1*w0 + w1*z0,
1242  -x1*x0 - y1*y0 - z1*z0 + w1*w0), dtype=numpy.float64)
1243 
1244 
1245 def quaternion_conjugate(quaternion):
1246  """Return conjugate of quaternion.
1247 
1248  >>> q0 = random_quaternion()
1249  >>> q1 = quaternion_conjugate(q0)
1250  >>> q1[3] == q0[3] and all(q1[:3] == -q0[:3])
1251  True
1252 
1253  """
1254  return numpy.array((-quaternion[0], -quaternion[1],
1255  -quaternion[2], quaternion[3]), dtype=numpy.float64)
1256 
1257 
1258 def quaternion_inverse(quaternion):
1259  """Return inverse of quaternion.
1260 
1261  >>> q0 = random_quaternion()
1262  >>> q1 = quaternion_inverse(q0)
1263  >>> numpy.allclose(quaternion_multiply(q0, q1), [0, 0, 0, 1])
1264  True
1265 
1266  """
1267  return quaternion_conjugate(quaternion) / numpy.dot(quaternion, quaternion)
1268 
1269 
1270 def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True):
1271  """Return spherical linear interpolation between two quaternions.
1272 
1273  >>> q0 = random_quaternion()
1274  >>> q1 = random_quaternion()
1275  >>> q = quaternion_slerp(q0, q1, 0.0)
1276  >>> numpy.allclose(q, q0)
1277  True
1278  >>> q = quaternion_slerp(q0, q1, 1.0, 1)
1279  >>> numpy.allclose(q, q1)
1280  True
1281  >>> q = quaternion_slerp(q0, q1, 0.5)
1282  >>> angle = math.acos(numpy.dot(q0, q))
1283  >>> numpy.allclose(2.0, math.acos(numpy.dot(q0, q1)) / angle) or \
1284  numpy.allclose(2.0, math.acos(-numpy.dot(q0, q1)) / angle)
1285  True
1286 
1287  """
1288  q0 = unit_vector(quat0[:4])
1289  q1 = unit_vector(quat1[:4])
1290  if fraction == 0.0:
1291  return q0
1292  elif fraction == 1.0:
1293  return q1
1294  d = numpy.dot(q0, q1)
1295  if abs(abs(d) - 1.0) < _EPS:
1296  return q0
1297  if shortestpath and d < 0.0:
1298  # invert rotation
1299  d = -d
1300  q1 *= -1.0
1301  angle = math.acos(d) + spin * math.pi
1302  if abs(angle) < _EPS:
1303  return q0
1304  isin = 1.0 / math.sin(angle)
1305  q0 *= math.sin((1.0 - fraction) * angle) * isin
1306  q1 *= math.sin(fraction * angle) * isin
1307  q0 += q1
1308  return q0
1309 
1310 
1311 def random_quaternion(rand=None):
1312  """Return uniform random unit quaternion.
1313 
1314  rand: array like or None
1315  Three independent random variables that are uniformly distributed
1316  between 0 and 1.
1317 
1318  >>> q = random_quaternion()
1319  >>> numpy.allclose(1.0, vector_norm(q))
1320  True
1321  >>> q = random_quaternion(numpy.random.random(3))
1322  >>> q.shape
1323  (4,)
1324 
1325  """
1326  if rand is None:
1327  rand = numpy.random.rand(3)
1328  else:
1329  assert len(rand) == 3
1330  r1 = numpy.sqrt(1.0 - rand[0])
1331  r2 = numpy.sqrt(rand[0])
1332  pi2 = math.pi * 2.0
1333  t1 = pi2 * rand[1]
1334  t2 = pi2 * rand[2]
1335  return numpy.array((numpy.sin(t1)*r1,
1336  numpy.cos(t1)*r1,
1337  numpy.sin(t2)*r2,
1338  numpy.cos(t2)*r2), dtype=numpy.float64)
1339 
1340 
1341 def random_rotation_matrix(rand=None):
1342  """Return uniform random rotation matrix.
1343 
1344  rnd: array like
1345  Three independent random variables that are uniformly distributed
1346  between 0 and 1 for each returned quaternion.
1347 
1348  >>> R = random_rotation_matrix()
1349  >>> numpy.allclose(numpy.dot(R.T, R), numpy.identity(4))
1350  True
1351 
1352  """
1353  return quaternion_matrix(random_quaternion(rand))
1354 
1355 
1356 class Arcball(object):
1357  """Virtual Trackball Control.
1358 
1359  >>> ball = Arcball()
1360  >>> ball = Arcball(initial=numpy.identity(4))
1361  >>> ball.place([320, 320], 320)
1362  >>> ball.down([500, 250])
1363  >>> ball.drag([475, 275])
1364  >>> R = ball.matrix()
1365  >>> numpy.allclose(numpy.sum(R), 3.90583455)
1366  True
1367  >>> ball = Arcball(initial=[0, 0, 0, 1])
1368  >>> ball.place([320, 320], 320)
1369  >>> ball.setaxes([1,1,0], [-1, 1, 0])
1370  >>> ball.setconstrain(True)
1371  >>> ball.down([400, 200])
1372  >>> ball.drag([200, 400])
1373  >>> R = ball.matrix()
1374  >>> numpy.allclose(numpy.sum(R), 0.2055924)
1375  True
1376  >>> ball.next()
1377 
1378  """
1379 
1380  def __init__(self, initial=None):
1381  """Initialize virtual trackball control.
1382 
1383  initial : quaternion or rotation matrix
1384 
1385  """
1386  self._axis = None
1387  self._axes = None
1388  self._radius = 1.0
1389  self._center = [0.0, 0.0]
1390  self._vdown = numpy.array([0, 0, 1], dtype=numpy.float64)
1391  self._constrain = False
1392 
1393  if initial is None:
1394  self._qdown = numpy.array([0, 0, 0, 1], dtype=numpy.float64)
1395  else:
1396  initial = numpy.array(initial, dtype=numpy.float64)
1397  if initial.shape == (4, 4):
1398  self._qdown = quaternion_from_matrix(initial)
1399  elif initial.shape == (4, ):
1400  initial /= vector_norm(initial)
1401  self._qdown = initial
1402  else:
1403  raise ValueError("initial not a quaternion or matrix.")
1404 
1405  self._qnow = self._qpre = self._qdown
1406 
1407  def place(self, center, radius):
1408  """Place Arcball, e.g. when window size changes.
1409 
1410  center : sequence[2]
1411  Window coordinates of trackball center.
1412  radius : float
1413  Radius of trackball in window coordinates.
1414 
1415  """
1416  self._radius = float(radius)
1417  self._center[0] = center[0]
1418  self._center[1] = center[1]
1419 
1420  def setaxes(self, *axes):
1421  """Set axes to constrain rotations."""
1422  if axes is None:
1423  self._axes = None
1424  else:
1425  self._axes = [unit_vector(axis) for axis in axes]
1426 
1427  def setconstrain(self, constrain):
1428  """Set state of constrain to axis mode."""
1429  self._constrain = constrain == True
1430 
1431  def getconstrain(self):
1432  """Return state of constrain to axis mode."""
1433  return self._constrain
1434 
1435  def down(self, point):
1436  """Set initial cursor window coordinates and pick constrain-axis."""
1437  self._vdown = arcball_map_to_sphere(point, self._center, self._radius)
1438  self._qdown = self._qpre = self._qnow
1439 
1440  if self._constrain and self._axes is not None:
1441  self._axis = arcball_nearest_axis(self._vdown, self._axes)
1442  self._vdown = arcball_constrain_to_axis(self._vdown, self._axis)
1443  else:
1444  self._axis = None
1445 
1446  def drag(self, point):
1447  """Update current cursor window coordinates."""
1448  vnow = arcball_map_to_sphere(point, self._center, self._radius)
1449 
1450  if self._axis is not None:
1451  vnow = arcball_constrain_to_axis(vnow, self._axis)
1452 
1453  self._qpre = self._qnow
1454 
1455  t = numpy.cross(self._vdown, vnow)
1456  if numpy.dot(t, t) < _EPS:
1457  self._qnow = self._qdown
1458  else:
1459  q = [t[0], t[1], t[2], numpy.dot(self._vdown, vnow)]
1460  self._qnow = quaternion_multiply(q, self._qdown)
1461 
1462  def next(self, acceleration=0.0):
1463  """Continue rotation in direction of last drag."""
1464  q = quaternion_slerp(self._qpre, self._qnow, 2.0+acceleration, False)
1465  self._qpre, self._qnow = self._qnow, q
1466 
1467  def matrix(self):
1468  """Return homogeneous rotation matrix."""
1469  return quaternion_matrix(self._qnow)
1470 
1471 
1472 def arcball_map_to_sphere(point, center, radius):
1473  """Return unit sphere coordinates from window coordinates."""
1474  v = numpy.array(((point[0] - center[0]) / radius,
1475  (center[1] - point[1]) / radius,
1476  0.0), dtype=numpy.float64)
1477  n = v[0]*v[0] + v[1]*v[1]
1478  if n > 1.0:
1479  v /= math.sqrt(n) # position outside of sphere
1480  else:
1481  v[2] = math.sqrt(1.0 - n)
1482  return v
1483 
1484 
1485 def arcball_constrain_to_axis(point, axis):
1486  """Return sphere point perpendicular to axis."""
1487  v = numpy.array(point, dtype=numpy.float64, copy=True)
1488  a = numpy.array(axis, dtype=numpy.float64, copy=True)
1489  v -= a * numpy.dot(a, v) # on plane
1490  n = vector_norm(v)
1491  if n > _EPS:
1492  if v[2] < 0.0:
1493  v *= -1.0
1494  v /= n
1495  return v
1496  if a[2] == 1.0:
1497  return numpy.array([1, 0, 0], dtype=numpy.float64)
1498  return unit_vector([-a[1], a[0], 0])
1499 
1500 
1501 def arcball_nearest_axis(point, axes):
1502  """Return axis, which arc is nearest to point."""
1503  point = numpy.array(point, dtype=numpy.float64, copy=False)
1504  nearest = None
1505  mx = -1.0
1506  for axis in axes:
1507  t = numpy.dot(arcball_constrain_to_axis(point, axis), point)
1508  if t > mx:
1509  nearest = axis
1510  mx = t
1511  return nearest
1512 
1513 
1514 # epsilon for testing whether a number is close to zero
1515 _EPS = numpy.finfo(float).eps * 4.0
1516 
1517 # axis sequences for Euler angles
1518 _NEXT_AXIS = [1, 2, 0, 1]
1519 
1520 # map axes strings to/from tuples of inner axis, parity, repetition, frame
1521 _AXES2TUPLE = {
1522  'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0),
1523  'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0),
1524  'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0),
1525  'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0),
1526  'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1),
1527  'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1),
1528  'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1),
1529  'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)}
1530 
1531 _TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items())
1532 
1533 # helper functions
1534 
1535 def vector_norm(data, axis=None, out=None):
1536  """Return length, i.e. eucledian norm, of ndarray along axis.
1537 
1538  >>> v = numpy.random.random(3)
1539  >>> n = vector_norm(v)
1540  >>> numpy.allclose(n, numpy.linalg.norm(v))
1541  True
1542  >>> v = numpy.random.rand(6, 5, 3)
1543  >>> n = vector_norm(v, axis=-1)
1544  >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=2)))
1545  True
1546  >>> n = vector_norm(v, axis=1)
1547  >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1548  True
1549  >>> v = numpy.random.rand(5, 4, 3)
1550  >>> n = numpy.empty((5, 3), dtype=numpy.float64)
1551  >>> vector_norm(v, axis=1, out=n)
1552  >>> numpy.allclose(n, numpy.sqrt(numpy.sum(v*v, axis=1)))
1553  True
1554  >>> vector_norm([])
1555  0.0
1556  >>> vector_norm([1.0])
1557  1.0
1558 
1559  """
1560  data = numpy.array(data, dtype=numpy.float64, copy=True)
1561  if out is None:
1562  if data.ndim == 1:
1563  return math.sqrt(numpy.dot(data, data))
1564  data *= data
1565  out = numpy.atleast_1d(numpy.sum(data, axis=axis))
1566  numpy.sqrt(out, out)
1567  return out
1568  else:
1569  data *= data
1570  numpy.sum(data, axis=axis, out=out)
1571  numpy.sqrt(out, out)
1572 
1573 
1574 def unit_vector(data, axis=None, out=None):
1575  """Return ndarray normalized by length, i.e. eucledian norm, along axis.
1576 
1577  >>> v0 = numpy.random.random(3)
1578  >>> v1 = unit_vector(v0)
1579  >>> numpy.allclose(v1, v0 / numpy.linalg.norm(v0))
1580  True
1581  >>> v0 = numpy.random.rand(5, 4, 3)
1582  >>> v1 = unit_vector(v0, axis=-1)
1583  >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=2)), 2)
1584  >>> numpy.allclose(v1, v2)
1585  True
1586  >>> v1 = unit_vector(v0, axis=1)
1587  >>> v2 = v0 / numpy.expand_dims(numpy.sqrt(numpy.sum(v0*v0, axis=1)), 1)
1588  >>> numpy.allclose(v1, v2)
1589  True
1590  >>> v1 = numpy.empty((5, 4, 3), dtype=numpy.float64)
1591  >>> unit_vector(v0, axis=1, out=v1)
1592  >>> numpy.allclose(v1, v2)
1593  True
1594  >>> list(unit_vector([]))
1595  []
1596  >>> list(unit_vector([1.0]))
1597  [1.0]
1598 
1599  """
1600  if out is None:
1601  data = numpy.array(data, dtype=numpy.float64, copy=True)
1602  if data.ndim == 1:
1603  data /= math.sqrt(numpy.dot(data, data))
1604  return data
1605  else:
1606  if out is not data:
1607  out[:] = numpy.array(data, copy=False)
1608  data = out
1609  length = numpy.atleast_1d(numpy.sum(data*data, axis))
1610  numpy.sqrt(length, length)
1611  if axis is not None:
1612  length = numpy.expand_dims(length, axis)
1613  data /= length
1614  if out is None:
1615  return data
1616 
1617 
1618 def random_vector(size):
1619  """Return array of random doubles in the half-open interval [0.0, 1.0).
1620 
1621  >>> v = random_vector(10000)
1622  >>> numpy.all(v >= 0.0) and numpy.all(v < 1.0)
1623  True
1624  >>> v0 = random_vector(10)
1625  >>> v1 = random_vector(10)
1626  >>> numpy.any(v0 == v1)
1627  False
1628 
1629  """
1630  return numpy.random.random(size)
1631 
1632 
1633 def inverse_matrix(matrix):
1634  """Return inverse of square transformation matrix.
1635 
1636  >>> M0 = random_rotation_matrix()
1637  >>> M1 = inverse_matrix(M0.T)
1638  >>> numpy.allclose(M1, numpy.linalg.inv(M0.T))
1639  True
1640  >>> for size in range(1, 7):
1641  ... M0 = numpy.random.rand(size, size)
1642  ... M1 = inverse_matrix(M0)
1643  ... if not numpy.allclose(M1, numpy.linalg.inv(M0)): print size
1644 
1645  """
1646  return numpy.linalg.inv(matrix)
1647 
1648 
1649 def concatenate_matrices(*matrices):
1650  """Return concatenation of series of transformation matrices.
1651 
1652  >>> M = numpy.random.rand(16).reshape((4, 4)) - 0.5
1653  >>> numpy.allclose(M, concatenate_matrices(M))
1654  True
1655  >>> numpy.allclose(numpy.dot(M, M.T), concatenate_matrices(M, M.T))
1656  True
1657 
1658  """
1659  M = numpy.identity(4)
1660  for i in matrices:
1661  M = numpy.dot(M, i)
1662  return M
1663 
1664 
1665 def is_same_transform(matrix0, matrix1):
1666  """Return True if two matrices perform same transformation.
1667 
1668  >>> is_same_transform(numpy.identity(4), numpy.identity(4))
1669  True
1670  >>> is_same_transform(numpy.identity(4), random_rotation_matrix())
1671  False
1672 
1673  """
1674  matrix0 = numpy.array(matrix0, dtype=numpy.float64, copy=True)
1675  matrix0 /= matrix0[3, 3]
1676  matrix1 = numpy.array(matrix1, dtype=numpy.float64, copy=True)
1677  matrix1 /= matrix1[3, 3]
1678  return numpy.allclose(matrix0, matrix1)
1679 
1680 
1681 def _import_module(module_name, warn=True, prefix='_py_', ignore='_'):
1682  """Try import all public attributes from module into global namespace.
1683 
1684  Existing attributes with name clashes are renamed with prefix.
1685  Attributes starting with underscore are ignored by default.
1686 
1687  Return True on successful import.
1688 
1689  """
1690  try:
1691  module = __import__(module_name)
1692  except ImportError:
1693  if warn:
1694  warnings.warn("Failed to import module " + module_name)
1695  else:
1696  for attr in dir(module):
1697  if ignore and attr.startswith(ignore):
1698  continue
1699  if prefix:
1700  if attr in globals():
1701  globals()[prefix + attr] = globals()[attr]
1702  elif warn:
1703  warnings.warn("No Python implementation of " + attr)
1704  globals()[attr] = getattr(module, attr)
1705  return True
def quaternion_from_euler(ai, aj, ak, axes='sxyz')
def projection_matrix(point, normal, direction=None, perspective=None, pseudo=False)
def scale_matrix(factor, origin=None, direction=None)
def reflection_matrix(point, normal)
def euler_from_quaternion(quaternion, axes='sxyz')
def clip_matrix(left, right, bottom, top, near, far, perspective=False)
def quaternion_multiply(quaternion1, quaternion0)
def euler_matrix(ai, aj, ak, axes='sxyz')
def is_same_transform(matrix0, matrix1)
def superimposition_matrix(v0, v1, scaling=False, usesvd=True)
def euler_from_matrix(matrix, axes='sxyz')
def vector_norm(data, axis=None, out=None)
def rotation_matrix(angle, direction, point=None)
def quaternion_slerp(quat0, quat1, fraction, spin=0, shortestpath=True)
def orthogonalization_matrix(lengths, angles)
def shear_matrix(angle, direction, point, normal)
def projection_from_matrix(matrix, pseudo=False)
def compose_matrix(scale=None, shear=None, angles=None, translate=None, perspective=None)
def quaternion_about_axis(angle, axis)
def unit_vector(data, axis=None, out=None)


uuv_assistants
Author(s): Musa Morena Marcusso Manhaes , Sebastian Scherer , Luiz Ricardo Douat
autogenerated on Mon Jul 1 2019 19:39:08