Functions
Exponential functions
Collaboration diagram for Exponential functions:

Functions

template<typename genType >
GLM_FUNC_DECL genType glm::exp (genType const &x)
 
template<typename genType >
GLM_FUNC_DECL genType glm::exp2 (genType const &x)
 
template<typename genType >
GLM_FUNC_DECL genType glm::inversesqrt (genType const &x)
 
template<typename genType >
GLM_FUNC_DECL genType glm::log (genType const &x)
 
template<typename genType >
GLM_FUNC_DECL genType glm::log2 (genType x)
 
template<typename genType >
GLM_FUNC_DECL genType glm::pow (genType const &base, genType const &exponent)
 
template<typename T , precision P, template< typename, precision > class vecType>
GLM_FUNC_DECL vecType< T, P > glm::sqrt (vecType< T, P > const &x)
 

Detailed Description

These all operate component-wise. The description is per component.

Function Documentation

template<typename genType >
GLM_FUNC_DECL genType glm::exp ( genType const &  x)

Returns the natural exponentiation of x, i.e., e^x.

Parameters
xexp function is defined for input values of x defined in the range (inf-, inf+) in the limit of the type precision.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL exp man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions
template<typename genType >
GLM_FUNC_DECL genType glm::exp2 ( genType const &  x)

Returns 2 raised to the x power.

Parameters
xexp2 function is defined for input values of x defined in the range (inf-, inf+) in the limit of the type precision.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL exp2 man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions
template<typename genType >
GLM_FUNC_DECL genType glm::inversesqrt ( genType const &  x)

Returns the reciprocal of the positive square root of x.

Parameters
xinversesqrt function is defined for input values of x defined in the range [0, inf+) in the limit of the type precision.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL inversesqrt man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions
template<typename genType >
GLM_FUNC_DECL genType glm::log ( genType const &  x)

Returns the natural logarithm of x, i.e., returns the value y which satisfies the equation x = e^y. Results are undefined if x <= 0.

Parameters
xlog function is defined for input values of x defined in the range (0, inf+) in the limit of the type precision.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL log man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions
template<typename genType >
GLM_FUNC_DECL genType glm::log2 ( genType  x)

Returns the base 2 log of x, i.e., returns the value y, which satisfies the equation x = 2 ^ y.

Parameters
xlog2 function is defined for input values of x defined in the range (0, inf+) in the limit of the type precision.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL log2 man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions
template<typename genType >
GLM_FUNC_DECL genType glm::pow ( genType const &  base,
genType const &  exponent 
)

Returns 'base' raised to the power 'exponent'.

Parameters
baseFloating point value. pow function is defined for input values of x defined in the range (inf-, inf+) in the limit of the type precision.
exponentFloating point value representing the 'exponent'.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL pow man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions
template<typename T , precision P, template< typename, precision > class vecType>
GLM_FUNC_DECL vecType<T, P> glm::sqrt ( vecType< T, P > const &  x)

Returns the positive square root of x.

Parameters
xsqrt function is defined for input values of x defined in the range [0, inf+) in the limit of the type precision.
Template Parameters
genTypeFloating-point scalar or vector types.
See also
GLSL sqrt man page
GLSL 4.20.8 specification, section 8.2 Exponential Functions


rtabmap
Author(s): Mathieu Labbe
autogenerated on Wed Jun 5 2019 22:43:42