charconv_test.cc
Go to the documentation of this file.
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/charconv.h"
16 
17 #include <cstdlib>
18 #include <string>
19 
20 #include "gmock/gmock.h"
21 #include "gtest/gtest.h"
23 #include "absl/strings/str_cat.h"
25 
26 #ifdef _MSC_FULL_VER
27 #define ABSL_COMPILER_DOES_EXACT_ROUNDING 0
28 #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 0
29 #else
30 #define ABSL_COMPILER_DOES_EXACT_ROUNDING 1
31 #define ABSL_STRTOD_HANDLES_NAN_CORRECTLY 1
32 #endif
33 
34 namespace {
35 
37 
38 #if ABSL_COMPILER_DOES_EXACT_ROUNDING
39 
40 // Tests that the given string is accepted by absl::from_chars, and that it
41 // converts exactly equal to the given number.
42 void TestDoubleParse(absl::string_view str, double expected_number) {
43  SCOPED_TRACE(str);
44  double actual_number = 0.0;
46  absl::from_chars(str.data(), str.data() + str.length(), actual_number);
47  EXPECT_EQ(result.ec, std::errc());
48  EXPECT_EQ(result.ptr, str.data() + str.length());
49  EXPECT_EQ(actual_number, expected_number);
50 }
51 
52 void TestFloatParse(absl::string_view str, float expected_number) {
53  SCOPED_TRACE(str);
54  float actual_number = 0.0;
56  absl::from_chars(str.data(), str.data() + str.length(), actual_number);
57  EXPECT_EQ(result.ec, std::errc());
58  EXPECT_EQ(result.ptr, str.data() + str.length());
59  EXPECT_EQ(actual_number, expected_number);
60 }
61 
62 // Tests that the given double or single precision floating point literal is
63 // parsed correctly by absl::from_chars.
64 //
65 // These convenience macros assume that the C++ compiler being used also does
66 // fully correct decimal-to-binary conversions.
67 #define FROM_CHARS_TEST_DOUBLE(number) \
68  { \
69  TestDoubleParse(#number, number); \
70  TestDoubleParse("-" #number, -number); \
71  }
72 
73 #define FROM_CHARS_TEST_FLOAT(number) \
74  { \
75  TestFloatParse(#number, number##f); \
76  TestFloatParse("-" #number, -number##f); \
77  }
78 
79 TEST(FromChars, NearRoundingCases) {
80  // Cases from "A Program for Testing IEEE Decimal-Binary Conversion"
81  // by Vern Paxson.
82 
83  // Forms that should round towards zero. (These are the hardest cases for
84  // each decimal mantissa size.)
85  FROM_CHARS_TEST_DOUBLE(5.e125);
86  FROM_CHARS_TEST_DOUBLE(69.e267);
87  FROM_CHARS_TEST_DOUBLE(999.e-026);
88  FROM_CHARS_TEST_DOUBLE(7861.e-034);
89  FROM_CHARS_TEST_DOUBLE(75569.e-254);
90  FROM_CHARS_TEST_DOUBLE(928609.e-261);
91  FROM_CHARS_TEST_DOUBLE(9210917.e080);
92  FROM_CHARS_TEST_DOUBLE(84863171.e114);
93  FROM_CHARS_TEST_DOUBLE(653777767.e273);
94  FROM_CHARS_TEST_DOUBLE(5232604057.e-298);
95  FROM_CHARS_TEST_DOUBLE(27235667517.e-109);
96  FROM_CHARS_TEST_DOUBLE(653532977297.e-123);
97  FROM_CHARS_TEST_DOUBLE(3142213164987.e-294);
98  FROM_CHARS_TEST_DOUBLE(46202199371337.e-072);
99  FROM_CHARS_TEST_DOUBLE(231010996856685.e-073);
100  FROM_CHARS_TEST_DOUBLE(9324754620109615.e212);
101  FROM_CHARS_TEST_DOUBLE(78459735791271921.e049);
102  FROM_CHARS_TEST_DOUBLE(272104041512242479.e200);
103  FROM_CHARS_TEST_DOUBLE(6802601037806061975.e198);
104  FROM_CHARS_TEST_DOUBLE(20505426358836677347.e-221);
105  FROM_CHARS_TEST_DOUBLE(836168422905420598437.e-234);
106  FROM_CHARS_TEST_DOUBLE(4891559871276714924261.e222);
107  FROM_CHARS_TEST_FLOAT(5.e-20);
108  FROM_CHARS_TEST_FLOAT(67.e14);
109  FROM_CHARS_TEST_FLOAT(985.e15);
110  FROM_CHARS_TEST_FLOAT(7693.e-42);
111  FROM_CHARS_TEST_FLOAT(55895.e-16);
112  FROM_CHARS_TEST_FLOAT(996622.e-44);
113  FROM_CHARS_TEST_FLOAT(7038531.e-32);
114  FROM_CHARS_TEST_FLOAT(60419369.e-46);
115  FROM_CHARS_TEST_FLOAT(702990899.e-20);
116  FROM_CHARS_TEST_FLOAT(6930161142.e-48);
117  FROM_CHARS_TEST_FLOAT(25933168707.e-13);
118  FROM_CHARS_TEST_FLOAT(596428896559.e20);
119 
120  // Similarly, forms that should round away from zero.
121  FROM_CHARS_TEST_DOUBLE(9.e-265);
122  FROM_CHARS_TEST_DOUBLE(85.e-037);
123  FROM_CHARS_TEST_DOUBLE(623.e100);
124  FROM_CHARS_TEST_DOUBLE(3571.e263);
125  FROM_CHARS_TEST_DOUBLE(81661.e153);
126  FROM_CHARS_TEST_DOUBLE(920657.e-023);
127  FROM_CHARS_TEST_DOUBLE(4603285.e-024);
128  FROM_CHARS_TEST_DOUBLE(87575437.e-309);
129  FROM_CHARS_TEST_DOUBLE(245540327.e122);
130  FROM_CHARS_TEST_DOUBLE(6138508175.e120);
131  FROM_CHARS_TEST_DOUBLE(83356057653.e193);
132  FROM_CHARS_TEST_DOUBLE(619534293513.e124);
133  FROM_CHARS_TEST_DOUBLE(2335141086879.e218);
134  FROM_CHARS_TEST_DOUBLE(36167929443327.e-159);
135  FROM_CHARS_TEST_DOUBLE(609610927149051.e-255);
136  FROM_CHARS_TEST_DOUBLE(3743626360493413.e-165);
137  FROM_CHARS_TEST_DOUBLE(94080055902682397.e-242);
138  FROM_CHARS_TEST_DOUBLE(899810892172646163.e283);
139  FROM_CHARS_TEST_DOUBLE(7120190517612959703.e120);
140  FROM_CHARS_TEST_DOUBLE(25188282901709339043.e-252);
141  FROM_CHARS_TEST_DOUBLE(308984926168550152811.e-052);
142  FROM_CHARS_TEST_DOUBLE(6372891218502368041059.e064);
143  FROM_CHARS_TEST_FLOAT(3.e-23);
144  FROM_CHARS_TEST_FLOAT(57.e18);
145  FROM_CHARS_TEST_FLOAT(789.e-35);
146  FROM_CHARS_TEST_FLOAT(2539.e-18);
147  FROM_CHARS_TEST_FLOAT(76173.e28);
148  FROM_CHARS_TEST_FLOAT(887745.e-11);
149  FROM_CHARS_TEST_FLOAT(5382571.e-37);
150  FROM_CHARS_TEST_FLOAT(82381273.e-35);
151  FROM_CHARS_TEST_FLOAT(750486563.e-38);
152  FROM_CHARS_TEST_FLOAT(3752432815.e-39);
153  FROM_CHARS_TEST_FLOAT(75224575729.e-45);
154  FROM_CHARS_TEST_FLOAT(459926601011.e15);
155 }
156 
157 #undef FROM_CHARS_TEST_DOUBLE
158 #undef FROM_CHARS_TEST_FLOAT
159 #endif
160 
161 float ToFloat(absl::string_view s) {
162  float f;
163  absl::from_chars(s.data(), s.data() + s.size(), f);
164  return f;
165 }
166 
167 double ToDouble(absl::string_view s) {
168  double d;
169  absl::from_chars(s.data(), s.data() + s.size(), d);
170  return d;
171 }
172 
173 // A duplication of the test cases in "NearRoundingCases" above, but with
174 // expected values expressed with integers, using ldexp/ldexpf. These test
175 // cases will work even on compilers that do not accurately round floating point
176 // literals.
177 TEST(FromChars, NearRoundingCasesExplicit) {
178  EXPECT_EQ(ToDouble("5.e125"), ldexp(6653062250012735, 365));
179  EXPECT_EQ(ToDouble("69.e267"), ldexp(4705683757438170, 841));
180  EXPECT_EQ(ToDouble("999.e-026"), ldexp(6798841691080350, -129));
181  EXPECT_EQ(ToDouble("7861.e-034"), ldexp(8975675289889240, -153));
182  EXPECT_EQ(ToDouble("75569.e-254"), ldexp(6091718967192243, -880));
183  EXPECT_EQ(ToDouble("928609.e-261"), ldexp(7849264900213743, -900));
184  EXPECT_EQ(ToDouble("9210917.e080"), ldexp(8341110837370930, 236));
185  EXPECT_EQ(ToDouble("84863171.e114"), ldexp(4625202867375927, 353));
186  EXPECT_EQ(ToDouble("653777767.e273"), ldexp(5068902999763073, 884));
187  EXPECT_EQ(ToDouble("5232604057.e-298"), ldexp(5741343011915040, -1010));
188  EXPECT_EQ(ToDouble("27235667517.e-109"), ldexp(6707124626673586, -380));
189  EXPECT_EQ(ToDouble("653532977297.e-123"), ldexp(7078246407265384, -422));
190  EXPECT_EQ(ToDouble("3142213164987.e-294"), ldexp(8219991337640559, -988));
191  EXPECT_EQ(ToDouble("46202199371337.e-072"), ldexp(5224462102115359, -246));
192  EXPECT_EQ(ToDouble("231010996856685.e-073"), ldexp(5224462102115359, -247));
193  EXPECT_EQ(ToDouble("9324754620109615.e212"), ldexp(5539753864394442, 705));
194  EXPECT_EQ(ToDouble("78459735791271921.e049"), ldexp(8388176519442766, 166));
195  EXPECT_EQ(ToDouble("272104041512242479.e200"), ldexp(5554409530847367, 670));
196  EXPECT_EQ(ToDouble("6802601037806061975.e198"), ldexp(5554409530847367, 668));
197  EXPECT_EQ(ToDouble("20505426358836677347.e-221"),
198  ldexp(4524032052079546, -722));
199  EXPECT_EQ(ToDouble("836168422905420598437.e-234"),
200  ldexp(5070963299887562, -760));
201  EXPECT_EQ(ToDouble("4891559871276714924261.e222"),
202  ldexp(6452687840519111, 757));
203  EXPECT_EQ(ToFloat("5.e-20"), ldexpf(15474250, -88));
204  EXPECT_EQ(ToFloat("67.e14"), ldexpf(12479722, 29));
205  EXPECT_EQ(ToFloat("985.e15"), ldexpf(14333636, 36));
206  EXPECT_EQ(ToFloat("7693.e-42"), ldexpf(10979816, -150));
207  EXPECT_EQ(ToFloat("55895.e-16"), ldexpf(12888509, -61));
208  EXPECT_EQ(ToFloat("996622.e-44"), ldexpf(14224264, -150));
209  EXPECT_EQ(ToFloat("7038531.e-32"), ldexpf(11420669, -107));
210  EXPECT_EQ(ToFloat("60419369.e-46"), ldexpf(8623340, -150));
211  EXPECT_EQ(ToFloat("702990899.e-20"), ldexpf(16209866, -61));
212  EXPECT_EQ(ToFloat("6930161142.e-48"), ldexpf(9891056, -150));
213  EXPECT_EQ(ToFloat("25933168707.e-13"), ldexpf(11138211, -32));
214  EXPECT_EQ(ToFloat("596428896559.e20"), ldexpf(12333860, 82));
215 
216 
217  EXPECT_EQ(ToDouble("9.e-265"), ldexp(8168427841980010, -930));
218  EXPECT_EQ(ToDouble("85.e-037"), ldexp(6360455125664090, -169));
219  EXPECT_EQ(ToDouble("623.e100"), ldexp(6263531988747231, 289));
220  EXPECT_EQ(ToDouble("3571.e263"), ldexp(6234526311072170, 833));
221  EXPECT_EQ(ToDouble("81661.e153"), ldexp(6696636728760206, 472));
222  EXPECT_EQ(ToDouble("920657.e-023"), ldexp(5975405561110124, -109));
223  EXPECT_EQ(ToDouble("4603285.e-024"), ldexp(5975405561110124, -110));
224  EXPECT_EQ(ToDouble("87575437.e-309"), ldexp(8452160731874668, -1053));
225  EXPECT_EQ(ToDouble("245540327.e122"), ldexp(4985336549131723, 381));
226  EXPECT_EQ(ToDouble("6138508175.e120"), ldexp(4985336549131723, 379));
227  EXPECT_EQ(ToDouble("83356057653.e193"), ldexp(5986732817132056, 625));
228  EXPECT_EQ(ToDouble("619534293513.e124"), ldexp(4798406992060657, 399));
229  EXPECT_EQ(ToDouble("2335141086879.e218"), ldexp(5419088166961646, 713));
230  EXPECT_EQ(ToDouble("36167929443327.e-159"), ldexp(8135819834632444, -536));
231  EXPECT_EQ(ToDouble("609610927149051.e-255"), ldexp(4576664294594737, -850));
232  EXPECT_EQ(ToDouble("3743626360493413.e-165"), ldexp(6898586531774201, -549));
233  EXPECT_EQ(ToDouble("94080055902682397.e-242"), ldexp(6273271706052298, -800));
234  EXPECT_EQ(ToDouble("899810892172646163.e283"), ldexp(7563892574477827, 947));
235  EXPECT_EQ(ToDouble("7120190517612959703.e120"), ldexp(5385467232557565, 409));
236  EXPECT_EQ(ToDouble("25188282901709339043.e-252"),
237  ldexp(5635662608542340, -825));
238  EXPECT_EQ(ToDouble("308984926168550152811.e-052"),
239  ldexp(5644774693823803, -157));
240  EXPECT_EQ(ToDouble("6372891218502368041059.e064"),
241  ldexp(4616868614322430, 233));
242 
243  EXPECT_EQ(ToFloat("3.e-23"), ldexpf(9507380, -98));
244  EXPECT_EQ(ToFloat("57.e18"), ldexpf(12960300, 42));
245  EXPECT_EQ(ToFloat("789.e-35"), ldexpf(10739312, -130));
246  EXPECT_EQ(ToFloat("2539.e-18"), ldexpf(11990089, -72));
247  EXPECT_EQ(ToFloat("76173.e28"), ldexpf(9845130, 86));
248  EXPECT_EQ(ToFloat("887745.e-11"), ldexpf(9760860, -40));
249  EXPECT_EQ(ToFloat("5382571.e-37"), ldexpf(11447463, -124));
250  EXPECT_EQ(ToFloat("82381273.e-35"), ldexpf(8554961, -113));
251  EXPECT_EQ(ToFloat("750486563.e-38"), ldexpf(9975678, -120));
252  EXPECT_EQ(ToFloat("3752432815.e-39"), ldexpf(9975678, -121));
253  EXPECT_EQ(ToFloat("75224575729.e-45"), ldexpf(13105970, -137));
254  EXPECT_EQ(ToFloat("459926601011.e15"), ldexpf(12466336, 65));
255 }
256 
257 // Common test logic for converting a string which lies exactly halfway between
258 // two target floats.
259 //
260 // mantissa and exponent represent the precise value between two floating point
261 // numbers, `expected_low` and `expected_high`. The floating point
262 // representation to parse in `StrCat(mantissa, "e", exponent)`.
263 //
264 // This function checks that an input just slightly less than the exact value
265 // is rounded down to `expected_low`, and an input just slightly greater than
266 // the exact value is rounded up to `expected_high`.
267 //
268 // The exact value should round to `expected_half`, which must be either
269 // `expected_low` or `expected_high`.
270 template <typename FloatType>
271 void TestHalfwayValue(const std::string& mantissa, int exponent,
272  FloatType expected_low, FloatType expected_high,
273  FloatType expected_half) {
274  std::string low_rep = mantissa;
275  low_rep[low_rep.size() - 1] -= 1;
276  absl::StrAppend(&low_rep, std::string(1000, '9'), "e", exponent);
277 
278  FloatType actual_low = 0;
279  absl::from_chars(low_rep.data(), low_rep.data() + low_rep.size(), actual_low);
280  EXPECT_EQ(expected_low, actual_low);
281 
282  std::string high_rep =
283  absl::StrCat(mantissa, std::string(1000, '0'), "1e", exponent);
284  FloatType actual_high = 0;
285  absl::from_chars(high_rep.data(), high_rep.data() + high_rep.size(),
286  actual_high);
287  EXPECT_EQ(expected_high, actual_high);
288 
289  std::string halfway_rep = absl::StrCat(mantissa, "e", exponent);
290  FloatType actual_half = 0;
291  absl::from_chars(halfway_rep.data(), halfway_rep.data() + halfway_rep.size(),
292  actual_half);
293  EXPECT_EQ(expected_half, actual_half);
294 }
295 
296 TEST(FromChars, DoubleRounding) {
297  const double zero = 0.0;
298  const double first_subnormal = nextafter(zero, 1.0);
299  const double second_subnormal = nextafter(first_subnormal, 1.0);
300 
301  const double first_normal = DBL_MIN;
302  const double last_subnormal = nextafter(first_normal, 0.0);
303  const double second_normal = nextafter(first_normal, 1.0);
304 
305  const double last_normal = DBL_MAX;
306  const double penultimate_normal = nextafter(last_normal, 0.0);
307 
308  // Various test cases for numbers between two representable floats. Each
309  // call to TestHalfwayValue tests a number just below and just above the
310  // halfway point, as well as the number exactly between them.
311 
312  // Test between zero and first_subnormal. Round-to-even tie rounds down.
313  TestHalfwayValue(
314  "2."
315  "470328229206232720882843964341106861825299013071623822127928412503377536"
316  "351043759326499181808179961898982823477228588654633283551779698981993873"
317  "980053909390631503565951557022639229085839244910518443593180284993653615"
318  "250031937045767824921936562366986365848075700158576926990370631192827955"
319  "855133292783433840935197801553124659726357957462276646527282722005637400"
320  "648549997709659947045402082816622623785739345073633900796776193057750674"
321  "017632467360096895134053553745851666113422376667860416215968046191446729"
322  "184030053005753084904876539171138659164623952491262365388187963623937328"
323  "042389101867234849766823508986338858792562830275599565752445550725518931"
324  "369083625477918694866799496832404970582102851318545139621383772282614543"
325  "7693412532098591327667236328125",
326  -324, zero, first_subnormal, zero);
327 
328  // first_subnormal and second_subnormal. Round-to-even tie rounds up.
329  TestHalfwayValue(
330  "7."
331  "410984687618698162648531893023320585475897039214871466383785237510132609"
332  "053131277979497545424539885696948470431685765963899850655339096945981621"
333  "940161728171894510697854671067917687257517734731555330779540854980960845"
334  "750095811137303474765809687100959097544227100475730780971111893578483867"
335  "565399878350301522805593404659373979179073872386829939581848166016912201"
336  "945649993128979841136206248449867871357218035220901702390328579173252022"
337  "052897402080290685402160661237554998340267130003581248647904138574340187"
338  "552090159017259254714629617513415977493871857473787096164563890871811984"
339  "127167305601704549300470526959016576377688490826798697257336652176556794"
340  "107250876433756084600398490497214911746308553955635418864151316847843631"
341  "3080237596295773983001708984375",
342  -324, first_subnormal, second_subnormal, second_subnormal);
343 
344  // last_subnormal and first_normal. Round-to-even tie rounds up.
345  TestHalfwayValue(
346  "2."
347  "225073858507201136057409796709131975934819546351645648023426109724822222"
348  "021076945516529523908135087914149158913039621106870086438694594645527657"
349  "207407820621743379988141063267329253552286881372149012981122451451889849"
350  "057222307285255133155755015914397476397983411801999323962548289017107081"
351  "850690630666655994938275772572015763062690663332647565300009245888316433"
352  "037779791869612049497390377829704905051080609940730262937128958950003583"
353  "799967207254304360284078895771796150945516748243471030702609144621572289"
354  "880258182545180325707018860872113128079512233426288368622321503775666622"
355  "503982534335974568884423900265498198385487948292206894721689831099698365"
356  "846814022854243330660339850886445804001034933970427567186443383770486037"
357  "86162277173854562306587467901408672332763671875",
358  -308, last_subnormal, first_normal, first_normal);
359 
360  // first_normal and second_normal. Round-to-even tie rounds down.
361  TestHalfwayValue(
362  "2."
363  "225073858507201630123055637955676152503612414573018013083228724049586647"
364  "606759446192036794116886953213985520549032000903434781884412325572184367"
365  "563347617020518175998922941393629966742598285899994830148971433555578567"
366  "693279306015978183162142425067962460785295885199272493577688320732492479"
367  "924816869232247165964934329258783950102250973957579510571600738343645738"
368  "494324192997092179207389919761694314131497173265255020084997973676783743"
369  "155205818804439163810572367791175177756227497413804253387084478193655533"
370  "073867420834526162513029462022730109054820067654020201547112002028139700"
371  "141575259123440177362244273712468151750189745559978653234255886219611516"
372  "335924167958029604477064946470184777360934300451421683607013647479513962"
373  "13837722826145437693412532098591327667236328125",
374  -308, first_normal, second_normal, first_normal);
375 
376  // penultimate_normal and last_normal. Round-to-even rounds down.
377  TestHalfwayValue(
378  "1."
379  "797693134862315608353258760581052985162070023416521662616611746258695532"
380  "672923265745300992879465492467506314903358770175220871059269879629062776"
381  "047355692132901909191523941804762171253349609463563872612866401980290377"
382  "995141836029815117562837277714038305214839639239356331336428021390916694"
383  "57927874464075218944",
384  308, penultimate_normal, last_normal, penultimate_normal);
385 }
386 
387 // Same test cases as DoubleRounding, now with new and improved Much Smaller
388 // Precision!
389 TEST(FromChars, FloatRounding) {
390  const float zero = 0.0;
391  const float first_subnormal = nextafterf(zero, 1.0);
392  const float second_subnormal = nextafterf(first_subnormal, 1.0);
393 
394  const float first_normal = FLT_MIN;
395  const float last_subnormal = nextafterf(first_normal, 0.0);
396  const float second_normal = nextafterf(first_normal, 1.0);
397 
398  const float last_normal = FLT_MAX;
399  const float penultimate_normal = nextafterf(last_normal, 0.0);
400 
401  // Test between zero and first_subnormal. Round-to-even tie rounds down.
402  TestHalfwayValue(
403  "7."
404  "006492321624085354618647916449580656401309709382578858785341419448955413"
405  "42930300743319094181060791015625",
406  -46, zero, first_subnormal, zero);
407 
408  // first_subnormal and second_subnormal. Round-to-even tie rounds up.
409  TestHalfwayValue(
410  "2."
411  "101947696487225606385594374934874196920392912814773657635602425834686624"
412  "028790902229957282543182373046875",
413  -45, first_subnormal, second_subnormal, second_subnormal);
414 
415  // last_subnormal and first_normal. Round-to-even tie rounds up.
416  TestHalfwayValue(
417  "1."
418  "175494280757364291727882991035766513322858992758990427682963118425003064"
419  "9651730385585324256680905818939208984375",
420  -38, last_subnormal, first_normal, first_normal);
421 
422  // first_normal and second_normal. Round-to-even tie rounds down.
423  TestHalfwayValue(
424  "1."
425  "175494420887210724209590083408724842314472120785184615334540294131831453"
426  "9442813071445925743319094181060791015625",
427  -38, first_normal, second_normal, first_normal);
428 
429  // penultimate_normal and last_normal. Round-to-even rounds down.
430  TestHalfwayValue("3.40282336497324057985868971510891282432", 38,
431  penultimate_normal, last_normal, penultimate_normal);
432 }
433 
434 TEST(FromChars, Underflow) {
435  // Check that underflow is handled correctly, according to the specification
436  // in DR 3081.
437  double d;
438  float f;
440 
441  std::string negative_underflow = "-1e-1000";
442  const char* begin = negative_underflow.data();
443  const char* end = begin + negative_underflow.size();
444  d = 100.0;
445  result = absl::from_chars(begin, end, d);
446  EXPECT_EQ(result.ptr, end);
447  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
448  EXPECT_TRUE(std::signbit(d)); // negative
449  EXPECT_GE(d, -std::numeric_limits<double>::min());
450  f = 100.0;
451  result = absl::from_chars(begin, end, f);
452  EXPECT_EQ(result.ptr, end);
453  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
454  EXPECT_TRUE(std::signbit(f)); // negative
455  EXPECT_GE(f, -std::numeric_limits<float>::min());
456 
457  std::string positive_underflow = "1e-1000";
458  begin = positive_underflow.data();
459  end = begin + positive_underflow.size();
460  d = -100.0;
461  result = absl::from_chars(begin, end, d);
462  EXPECT_EQ(result.ptr, end);
463  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
464  EXPECT_FALSE(std::signbit(d)); // positive
465  EXPECT_LE(d, std::numeric_limits<double>::min());
466  f = -100.0;
467  result = absl::from_chars(begin, end, f);
468  EXPECT_EQ(result.ptr, end);
469  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
470  EXPECT_FALSE(std::signbit(f)); // positive
471  EXPECT_LE(f, std::numeric_limits<float>::min());
472 }
473 
474 TEST(FromChars, Overflow) {
475  // Check that overflow is handled correctly, according to the specification
476  // in DR 3081.
477  double d;
478  float f;
480 
481  std::string negative_overflow = "-1e1000";
482  const char* begin = negative_overflow.data();
483  const char* end = begin + negative_overflow.size();
484  d = 100.0;
485  result = absl::from_chars(begin, end, d);
486  EXPECT_EQ(result.ptr, end);
487  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
488  EXPECT_TRUE(std::signbit(d)); // negative
489  EXPECT_EQ(d, -std::numeric_limits<double>::max());
490  f = 100.0;
491  result = absl::from_chars(begin, end, f);
492  EXPECT_EQ(result.ptr, end);
493  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
494  EXPECT_TRUE(std::signbit(f)); // negative
495  EXPECT_EQ(f, -std::numeric_limits<float>::max());
496 
497  std::string positive_overflow = "1e1000";
498  begin = positive_overflow.data();
499  end = begin + positive_overflow.size();
500  d = -100.0;
501  result = absl::from_chars(begin, end, d);
502  EXPECT_EQ(result.ptr, end);
503  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
504  EXPECT_FALSE(std::signbit(d)); // positive
505  EXPECT_EQ(d, std::numeric_limits<double>::max());
506  f = -100.0;
507  result = absl::from_chars(begin, end, f);
508  EXPECT_EQ(result.ptr, end);
509  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
510  EXPECT_FALSE(std::signbit(f)); // positive
511  EXPECT_EQ(f, std::numeric_limits<float>::max());
512 }
513 
514 TEST(FromChars, ReturnValuePtr) {
515  // Check that `ptr` points one past the number scanned, even if that number
516  // is not representable.
517  double d;
519 
520  std::string normal = "3.14@#$%@#$%";
521  result = absl::from_chars(normal.data(), normal.data() + normal.size(), d);
522  EXPECT_EQ(result.ec, std::errc());
523  EXPECT_EQ(result.ptr - normal.data(), 4);
524 
525  std::string overflow = "1e1000@#$%@#$%";
526  result = absl::from_chars(overflow.data(),
527  overflow.data() + overflow.size(), d);
528  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
529  EXPECT_EQ(result.ptr - overflow.data(), 6);
530 
531  std::string garbage = "#$%@#$%";
532  result = absl::from_chars(garbage.data(),
533  garbage.data() + garbage.size(), d);
534  EXPECT_EQ(result.ec, std::errc::invalid_argument);
535  EXPECT_EQ(result.ptr - garbage.data(), 0);
536 }
537 
538 // Check for a wide range of inputs that strtod() and absl::from_chars() exactly
539 // agree on the conversion amount.
540 //
541 // This test assumes the platform's strtod() uses perfect round_to_nearest
542 // rounding.
543 TEST(FromChars, TestVersusStrtod) {
544  for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
545  for (int exponent = -300; exponent < 300; ++exponent) {
546  std::string candidate = absl::StrCat(mantissa, "e", exponent);
547  double strtod_value = strtod(candidate.c_str(), nullptr);
548  double absl_value = 0;
549  absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
550  absl_value);
551  ASSERT_EQ(strtod_value, absl_value) << candidate;
552  }
553  }
554 }
555 
556 // Check for a wide range of inputs that strtof() and absl::from_chars() exactly
557 // agree on the conversion amount.
558 //
559 // This test assumes the platform's strtof() uses perfect round_to_nearest
560 // rounding.
561 TEST(FromChars, TestVersusStrtof) {
562  for (int mantissa = 1000000; mantissa <= 9999999; mantissa += 501) {
563  for (int exponent = -43; exponent < 32; ++exponent) {
564  std::string candidate = absl::StrCat(mantissa, "e", exponent);
565  float strtod_value = strtof(candidate.c_str(), nullptr);
566  float absl_value = 0;
567  absl::from_chars(candidate.data(), candidate.data() + candidate.size(),
568  absl_value);
569  ASSERT_EQ(strtod_value, absl_value) << candidate;
570  }
571  }
572 }
573 
574 // Tests if two floating point values have identical bit layouts. (EXPECT_EQ
575 // is not suitable for NaN testing, since NaNs are never equal.)
576 template <typename Float>
577 bool Identical(Float a, Float b) {
578  return 0 == memcmp(&a, &b, sizeof(Float));
579 }
580 
581 // Check that NaNs are parsed correctly. The spec requires that
582 // std::from_chars on "NaN(123abc)" return the same value as std::nan("123abc").
583 // How such an n-char-sequence affects the generated NaN is unspecified, so we
584 // just test for symmetry with std::nan and strtod here.
585 //
586 // (In Linux, this parses the value as a number and stuffs that number into the
587 // free bits of a quiet NaN.)
588 TEST(FromChars, NaNDoubles) {
589  for (std::string n_char_sequence :
590  {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
591  "8000000000000", "abc123", "legal_but_unexpected",
592  "99999999999999999999999", "_"}) {
593  std::string input = absl::StrCat("nan(", n_char_sequence, ")");
594  SCOPED_TRACE(input);
595  double from_chars_double;
596  absl::from_chars(input.data(), input.data() + input.size(),
597  from_chars_double);
598  double std_nan_double = std::nan(n_char_sequence.c_str());
599  EXPECT_TRUE(Identical(from_chars_double, std_nan_double));
600 
601  // Also check that we match strtod()'s behavior. This test assumes that the
602  // platform has a compliant strtod().
603 #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
604  double strtod_double = strtod(input.c_str(), nullptr);
605  EXPECT_TRUE(Identical(from_chars_double, strtod_double));
606 #endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
607 
608  // Check that we can parse a negative NaN
609  std::string negative_input = "-" + input;
610  double negative_from_chars_double;
611  absl::from_chars(negative_input.data(),
612  negative_input.data() + negative_input.size(),
613  negative_from_chars_double);
614  EXPECT_TRUE(std::signbit(negative_from_chars_double));
615  EXPECT_FALSE(Identical(negative_from_chars_double, from_chars_double));
616  from_chars_double = std::copysign(from_chars_double, -1.0);
617  EXPECT_TRUE(Identical(negative_from_chars_double, from_chars_double));
618  }
619 }
620 
621 TEST(FromChars, NaNFloats) {
622  for (std::string n_char_sequence :
623  {"", "1", "2", "3", "fff", "FFF", "200000", "400000", "4000000000000",
624  "8000000000000", "abc123", "legal_but_unexpected",
625  "99999999999999999999999", "_"}) {
626  std::string input = absl::StrCat("nan(", n_char_sequence, ")");
627  SCOPED_TRACE(input);
628  float from_chars_float;
629  absl::from_chars(input.data(), input.data() + input.size(),
630  from_chars_float);
631  float std_nan_float = std::nanf(n_char_sequence.c_str());
632  EXPECT_TRUE(Identical(from_chars_float, std_nan_float));
633 
634  // Also check that we match strtof()'s behavior. This test assumes that the
635  // platform has a compliant strtof().
636 #if ABSL_STRTOD_HANDLES_NAN_CORRECTLY
637  float strtof_float = strtof(input.c_str(), nullptr);
638  EXPECT_TRUE(Identical(from_chars_float, strtof_float));
639 #endif // ABSL_STRTOD_HANDLES_NAN_CORRECTLY
640 
641  // Check that we can parse a negative NaN
642  std::string negative_input = "-" + input;
643  float negative_from_chars_float;
644  absl::from_chars(negative_input.data(),
645  negative_input.data() + negative_input.size(),
646  negative_from_chars_float);
647  EXPECT_TRUE(std::signbit(negative_from_chars_float));
648  EXPECT_FALSE(Identical(negative_from_chars_float, from_chars_float));
649  from_chars_float = std::copysign(from_chars_float, -1.0);
650  EXPECT_TRUE(Identical(negative_from_chars_float, from_chars_float));
651  }
652 }
653 
654 // Returns an integer larger than step. The values grow exponentially.
655 int NextStep(int step) {
656  return step + (step >> 2) + 1;
657 }
658 
659 // Test a conversion on a family of input strings, checking that the calculation
660 // is correct for in-bounds values, and that overflow and underflow are done
661 // correctly for out-of-bounds values.
662 //
663 // input_generator maps from an integer index to a string to test.
664 // expected_generator maps from an integer index to an expected Float value.
665 // from_chars conversion of input_generator(i) should result in
666 // expected_generator(i).
667 //
668 // lower_bound and upper_bound denote the smallest and largest values for which
669 // the conversion is expected to succeed.
670 template <typename Float>
671 void TestOverflowAndUnderflow(
672  const std::function<std::string(int)>& input_generator,
673  const std::function<Float(int)>& expected_generator, int lower_bound,
674  int upper_bound) {
675  // test legal values near lower_bound
676  int index, step;
677  for (index = lower_bound, step = 1; index < upper_bound;
678  index += step, step = NextStep(step)) {
679  std::string input = input_generator(index);
680  SCOPED_TRACE(input);
681  Float expected = expected_generator(index);
682  Float actual;
683  auto result =
684  absl::from_chars(input.data(), input.data() + input.size(), actual);
685  EXPECT_EQ(result.ec, std::errc());
686  EXPECT_EQ(expected, actual)
687  << absl::StrFormat("%a vs %a", expected, actual);
688  }
689  // test legal values near upper_bound
690  for (index = upper_bound, step = 1; index > lower_bound;
691  index -= step, step = NextStep(step)) {
692  std::string input = input_generator(index);
693  SCOPED_TRACE(input);
694  Float expected = expected_generator(index);
695  Float actual;
696  auto result =
697  absl::from_chars(input.data(), input.data() + input.size(), actual);
698  EXPECT_EQ(result.ec, std::errc());
699  EXPECT_EQ(expected, actual)
700  << absl::StrFormat("%a vs %a", expected, actual);
701  }
702  // Test underflow values below lower_bound
703  for (index = lower_bound - 1, step = 1; index > -1000000;
704  index -= step, step = NextStep(step)) {
705  std::string input = input_generator(index);
706  SCOPED_TRACE(input);
707  Float actual;
708  auto result =
709  absl::from_chars(input.data(), input.data() + input.size(), actual);
710  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
711  EXPECT_LT(actual, 1.0); // check for underflow
712  }
713  // Test overflow values above upper_bound
714  for (index = upper_bound + 1, step = 1; index < 1000000;
715  index += step, step = NextStep(step)) {
716  std::string input = input_generator(index);
717  SCOPED_TRACE(input);
718  Float actual;
719  auto result =
720  absl::from_chars(input.data(), input.data() + input.size(), actual);
721  EXPECT_EQ(result.ec, std::errc::result_out_of_range);
722  EXPECT_GT(actual, 1.0); // check for overflow
723  }
724 }
725 
726 // Check that overflow and underflow are caught correctly for hex doubles.
727 //
728 // The largest representable double is 0x1.fffffffffffffp+1023, and the
729 // smallest representable subnormal is 0x0.0000000000001p-1022, which equals
730 // 0x1p-1074. Therefore 1023 and -1074 are the limits of acceptable exponents
731 // in this test.
732 TEST(FromChars, HexdecimalDoubleLimits) {
733  auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
734  auto expected_gen = [](int index) { return std::ldexp(1.0, index); };
735  TestOverflowAndUnderflow<double>(input_gen, expected_gen, -1074, 1023);
736 }
737 
738 // Check that overflow and underflow are caught correctly for hex floats.
739 //
740 // The largest representable float is 0x1.fffffep+127, and the smallest
741 // representable subnormal is 0x0.000002p-126, which equals 0x1p-149.
742 // Therefore 127 and -149 are the limits of acceptable exponents in this test.
743 TEST(FromChars, HexdecimalFloatLimits) {
744  auto input_gen = [](int index) { return absl::StrCat("0x1.0p", index); };
745  auto expected_gen = [](int index) { return std::ldexp(1.0f, index); };
746  TestOverflowAndUnderflow<float>(input_gen, expected_gen, -149, 127);
747 }
748 
749 // Check that overflow and underflow are caught correctly for decimal doubles.
750 //
751 // The largest representable double is about 1.8e308, and the smallest
752 // representable subnormal is about 5e-324. '1e-324' therefore rounds away from
753 // the smallest representable positive value. -323 and 308 are the limits of
754 // acceptable exponents in this test.
755 TEST(FromChars, DecimalDoubleLimits) {
756  auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
757  auto expected_gen = [](int index) { return Pow10(index); };
758  TestOverflowAndUnderflow<double>(input_gen, expected_gen, -323, 308);
759 }
760 
761 // Check that overflow and underflow are caught correctly for decimal floats.
762 //
763 // The largest representable float is about 3.4e38, and the smallest
764 // representable subnormal is about 1.45e-45. '1e-45' therefore rounds towards
765 // the smallest representable positive value. -45 and 38 are the limits of
766 // acceptable exponents in this test.
767 TEST(FromChars, DecimalFloatLimits) {
768  auto input_gen = [](int index) { return absl::StrCat("1.0e", index); };
769  auto expected_gen = [](int index) { return Pow10(index); };
770  TestOverflowAndUnderflow<float>(input_gen, expected_gen, -45, 38);
771 }
772 
773 } // namespace
double Pow10(int exp)
void StrAppend(std::string *dest, const AlphaNum &a)
Definition: str_cat.cc:193
char * begin
std::string StrCat(const AlphaNum &a, const AlphaNum &b)
Definition: str_cat.cc:98
#define FROM_CHARS_TEST_DOUBLE(number)
CONSTEXPR_F fields step(second_tag, fields f, diff_t n) noexcept
#define FROM_CHARS_TEST_FLOAT(number)
uint64_t mantissa
Definition: charconv.cc:238
char * end
constexpr size_type size() const noexcept
Definition: string_view.h:260
const char * ptr
Definition: charconv.h:44
ABSL_MUST_USE_RESULT std::string StrFormat(const FormatSpec< Args... > &format, const Args &...args)
Definition: str_format.h:305
int exponent
Definition: charconv.cc:239
constexpr size_type length() const noexcept
Definition: string_view.h:267
from_chars_result from_chars(const char *first, const char *last, double &value, chars_format fmt)
Definition: charconv.cc:679
constexpr const_pointer data() const noexcept
Definition: string_view.h:302
TEST(Symbolize, Unimplemented)
uint64_t b
Definition: layout_test.cc:50


abseil_cpp
Author(s):
autogenerated on Wed Jun 19 2019 19:19:56