4 Ensemble Anomaly Detector Framework     9         Example of training script for ROS module    20 import matplotlib.pyplot 
as plt
    21 from mpl_toolkits.mplot3d 
import Axes3D
    22 from mpl_toolkits.mplot3d.art3d 
import Poly3DCollection
    23 from sklearn 
import svm
    26 from sklearn.decomposition 
import PCA
    32         print y_pred_test.shape
    34         te0, te1, te2 = test[:, 0], test[:, 1], test[:, 2]
    35         y_pred_test = y_pred_test[0]
    38         ax = fig.gca(projection=
'3d')
    40         ax.scatter(te0, te1, te2, c=y_pred_test, \
    49         pca = PCA(n_components=3)
    52         data = pca.transform(data)
    58 if __name__ == 
"__main__":
    60         unsupervised_models = []
    61         supervised_models = []
    67         input_file = sys.argv[1] 
    72         with open(input_file, 
'r') as fil:    73                 local = yaml.load(fil)    75                 fit_file = local["Files"][
"fit_file"]
    76                 unsupervised_train_file = local[
"Files"][
"unsupervised_train"]
    77                 supervised_train_file = local[
"Files"][
"supervised_train"]
    78                 testing_file = local[
"Files"][
"testing"]
    80         clf_ocsvm17 = svm.OneClassSVM(nu=0.05, kernel=
"rbf", gamma=1000)
    81         unsupervised_models.append((
'ocsvm17', clf_ocsvm17))
    82         clf_ocsvm18 = svm.OneClassSVM(nu=0.06, kernel=
"rbf", gamma=1100)
    83         unsupervised_models.append((
'ocsvm18', clf_ocsvm18))
    86         clf_rbfsvm1 = svm.SVC(kernel=
'rbf', gamma=150, C=100000)
    87         supervised_models.append((
'clf_rbfsvm1', clf_rbfsvm1))
    91         interface.genmodel_train(unsupervised_models, supervised_models)
    97         u_preds, s_preds = interface.get_testing_predictions()
   101         x, y = interface.retrieve_data(testing_file[0][
"name"])
   103         print 'x shape: ', x.shape
   104         print 'y shape: ', np.array(y).shape
 
def reduce_graph_3d(data, preds)
def graph_3d(test, y_pred_test)