NearestNeighbor.h
Go to the documentation of this file.
1 // ****************************************************************************
2 // This file is part of the Integrating Vision Toolkit (IVT).
3 //
4 // The IVT is maintained by the Karlsruhe Institute of Technology (KIT)
5 // (www.kit.edu) in cooperation with the company Keyetech (www.keyetech.de).
6 //
7 // Copyright (C) 2014 Karlsruhe Institute of Technology (KIT).
8 // All rights reserved.
9 //
10 // Redistribution and use in source and binary forms, with or without
11 // modification, are permitted provided that the following conditions are met:
12 //
13 // 1. Redistributions of source code must retain the above copyright
14 // notice, this list of conditions and the following disclaimer.
15 //
16 // 2. Redistributions in binary form must reproduce the above copyright
17 // notice, this list of conditions and the following disclaimer in the
18 // documentation and/or other materials provided with the distribution.
19 //
20 // 3. Neither the name of the KIT nor the names of its contributors may be
21 // used to endorse or promote products derived from this software
22 // without specific prior written permission.
23 //
24 // THIS SOFTWARE IS PROVIDED BY THE KIT AND CONTRIBUTORS “AS IS” AND ANY
25 // EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
26 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
27 // DISCLAIMED. IN NO EVENT SHALL THE KIT OR CONTRIBUTORS BE LIABLE FOR ANY
28 // DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
29 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
31 // ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
32 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
33 // THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 // ****************************************************************************
35 // ****************************************************************************
36 // Filename: NearestNeighbor.h
37 // Author: Pedram Azad
38 // Date: 06.10.2009
39 // ****************************************************************************
40 
44 #ifndef _NEAREST_NEIGHBOR_H_
45 #define _NEAREST_NEIGHBOR_H_
46 
47 
48 // ****************************************************************************
49 // Necessary includes
50 // ****************************************************************************
51 
53 
54 
55 // ****************************************************************************
56 // Forward declarations
57 // ****************************************************************************
58 
59 class CKdTree;
60 
61 
62 
63 // ****************************************************************************
64 // CNearestNeighbor
65 // ****************************************************************************
66 
72 {
73 public:
75  {
79  };
80 
81  // constructor
83 
84  // destructor
86 
87 
88  // public methods
89  void SetKdTreeMaxLeaves(int nKdTreeMaxLeaves) { m_nKdTreeMaxLeaves = nKdTreeMaxLeaves; }
90  bool Train(const float *pData, int nDimension, int nDataSets);
91  int Classify(const float *pQuery, int nDimension, float &fResultError);
92  bool Classify(const float *pQueries, int nDimension, int nQueries, int *pResults, float *pResultErrors);
93 
94 
95 private:
96  // private attributes
99  float *m_pData;
104 };
105 
106 
107 
108 #endif /* _NEAREST_NEIGHBOR_H_ */
CNearestNeighbor(ComputationMethod method)
int Classify(const float *pQuery, int nDimension, float &fResultError)
void SetKdTreeMaxLeaves(int nKdTreeMaxLeaves)
Class containing different implementations of the nearest neighbor classificator. ...
bool Train(const float *pData, int nDimension, int nDataSets)
ComputationMethod m_method


asr_ivt
Author(s): Allgeyer Tobias, Hutmacher Robin, Kleinert Daniel, Meißner Pascal, Scholz Jonas, Stöckle Patrick
autogenerated on Mon Dec 2 2019 03:47:28