car_ws.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
47 // IMPLEMENTATION:
48 // ---------------
49 
51 #include <acado_gnuplot.hpp>
52 
53 
54 /* >>> start tutorial code >>> */
55 int main( ){
56 
58 
59  // INTRODUCE THE VARIABLES:
60  // -------------------------
61  DifferentialState x1,x2;
62  Control u ;
63  Parameter t1 ;
64  DifferentialEquation f(0.0,t1);
65 
66 
67  // DEFINE A DIFFERENTIAL EQUATION:
68  // -------------------------------
69  f << dot(x1) == x2;
70  f << dot(x2) == u;
71 
72 
73  // DEFINE AN OPTIMAL CONTROL PROBLEM:
74  // ----------------------------------
75  OCP ocp(0.0,t1,25);
76  ocp.minimizeMayerTerm( 0, x2 );
77  ocp.minimizeMayerTerm( 1, 2.0*t1/20.0);
78 
79  ocp.subjectTo( f );
80 
81  ocp.subjectTo( AT_START, x1 == 0.0 );
82  ocp.subjectTo( AT_START, x2 == 0.0 );
83  ocp.subjectTo( AT_END , x1 == 200.0 );
84 
85  ocp.subjectTo( 0.0 <= x1 <= 200.0001 );
86  ocp.subjectTo( 0.0 <= x2 <= 40.0 );
87  ocp.subjectTo( 0.0 <= u <= 5.0 );
88  ocp.subjectTo( 0.1 <= t1 <= 50.0 );
89 
90 
91  // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE OCP:
92  // -----------------------------------------------------
93  MultiObjectiveAlgorithm algorithm(ocp);
94 
96  algorithm.set( PARETO_FRONT_DISCRETIZATION, 11 );
97  algorithm.set( KKT_TOLERANCE, 1e-8 );
98 
99  // Generate Pareto set
100  algorithm.solve();
101 
102  algorithm.getWeights("car_ws_weights.txt");
103  algorithm.getAllDifferentialStates("car_ws_states.txt");
104  algorithm.getAllControls("car_ws_controls.txt");
105  algorithm.getAllParameters("car_ws_parameters.txt");
106 
107  // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
108  // ------------------------------------------------
109  VariablesGrid paretoFront;
110  algorithm.getParetoFront( paretoFront );
111 
112  GnuplotWindow window1;
113  window1.addSubplot( paretoFront, "Pareto Front (time versus energy)", "ENERGY","TIME", PM_POINTS );
114  window1.plot( );
115 
116 
117  // PRINT INFORMATION ABOUT THE ALGORITHM:
118  // --------------------------------------
119  algorithm.printInfo();
120 
121 
122  // SAVE INFORMATION:
123  // -----------------
124  paretoFront.print( "car_ws_pareto.txt" );
125 
126  return 0;
127 }
128 /* <<< end tutorial code <<< */
129 
returnValue print(std::ostream &stream=std::cout, const char *const name=DEFAULT_LABEL, const char *const startString=DEFAULT_START_STRING, const char *const endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const char *const colSeparator=DEFAULT_COL_SEPARATOR, const char *const rowSeparator=DEFAULT_ROW_SEPARATOR) const
DMatrix getWeights() const
virtual returnValue plot(PlotFrequency _frequency=PLOT_IN_ANY_CASE)
#define USING_NAMESPACE_ACADO
Provides a time grid consisting of vector-valued optimization variables at each grid point...
int main()
Definition: car_ws.cpp:55
returnValue printInfo()
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue minimizeMayerTerm(const Expression &arg)
Definition: ocp.cpp:238
returnValue addSubplot(PlotWindowSubplot &_subplot)
returnValue set(OptionsName name, int value)
Definition: options.cpp:126
returnValue getAllControls(const char *fileName) const
returnValue getParetoFront(VariablesGrid &paretoFront) const
Data class for defining optimal control problems.
Definition: ocp.hpp:89
Expression dot(const Expression &arg)
User-interface to formulate and solve optimal control problems with multiple objectives.
returnValue getAllDifferentialStates(const char *fileName) const
Provides an interface to Gnuplot for plotting algorithmic outputs.
returnValue getAllParameters(const char *fileName) const
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:29