car_nbi.cpp
Go to the documentation of this file.
1 /*
2  * This file is part of ACADO Toolkit.
3  *
4  * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
5  * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
6  * Milan Vukov, Rien Quirynen, KU Leuven.
7  * Developed within the Optimization in Engineering Center (OPTEC)
8  * under supervision of Moritz Diehl. All rights reserved.
9  *
10  * ACADO Toolkit is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 3 of the License, or (at your option) any later version.
14  *
15  * ACADO Toolkit is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with ACADO Toolkit; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  *
24  */
25 
26 
46 // IMPLEMENTATION:
47 // ---------------
48 
50 #include <acado_gnuplot.hpp>
51 
52 
53 /* >>> start tutorial code >>> */
54 int main( ){
55 
57 
58 
59  // INTRODUCE THE VARIABLES:
60  // ----------------------------
61  DifferentialState x1,x2;
62  Control u ;
63  Parameter t1 ;
64 
65  DifferentialEquation f(0.0,t1);
66 
67 
68  // DEFINE A DIFFERENTIAL EQUATION:
69  // -------------------------------
70  f << dot(x1) == x2;
71  f << dot(x2) == u;
72 
73 
74  // DEFINE AN OPTIMAL CONTROL PROBLEM:
75  // ----------------------------------
76  OCP ocp(0.0,t1,25);
77  ocp.minimizeMayerTerm( 0, x2 );
78  ocp.minimizeMayerTerm( 1, 2.0*t1/20.0);
79 
80  ocp.subjectTo( f );
81 
82  ocp.subjectTo( AT_START, x1 == 0.0 );
83  ocp.subjectTo( AT_START, x2 == 0.0 );
84  ocp.subjectTo( AT_END , x1 == 200.0 );
85 
86  ocp.subjectTo( 0.0 <= x1 <= 200.0001 );
87  ocp.subjectTo( 0.0 <= x2 <= 40.0 );
88  ocp.subjectTo( 0.0 <= u <= 5.0 );
89  ocp.subjectTo( 0.1 <= t1 <= 50.0 );
90 
91 
92  // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE OCP:
93  // -----------------------------------------------------
94  MultiObjectiveAlgorithm algorithm(ocp);
95 
96  algorithm.set( PARETO_FRONT_DISCRETIZATION, 11 );
98  algorithm.set( KKT_TOLERANCE, 1e-8 );
99 
100  // Minimize individual objective function
101  algorithm.solveSingleObjective(0);
102 
103  // Minimize individual objective function
104  algorithm.solveSingleObjective(1);
105 
106  // Generate Pareto set
107  algorithm.solve();
108 
109  algorithm.getWeights("car_nbi_weights.txt");
110  algorithm.getAllDifferentialStates("car_nbi_states.txt");
111  algorithm.getAllControls("car_nbi_controls.txt");
112  algorithm.getAllParameters("car_nbi_parameters.txt");
113 
114 
115  // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
116  // ------------------------------------------------
117  VariablesGrid paretoFront;
118  algorithm.getParetoFront( paretoFront );
119 
120  GnuplotWindow window1;
121  window1.addSubplot( paretoFront, "Pareto Front (time versus energy)", "ENERGY","TIME", PM_POINTS );
122  window1.plot( );
123 
124 
125  // PRINT INFORMATION ABOUT THE ALGORITHM:
126  // --------------------------------------
127  algorithm.printInfo();
128 
129 
130  // SAVE INFORMATION:
131  // -----------------
132  paretoFront.print( "car_nbi_pareto.txt" );
133 
134  return 0;
135 }
136 /* <<< end tutorial code <<< */
137 
returnValue print(std::ostream &stream=std::cout, const char *const name=DEFAULT_LABEL, const char *const startString=DEFAULT_START_STRING, const char *const endString=DEFAULT_END_STRING, uint width=DEFAULT_WIDTH, uint precision=DEFAULT_PRECISION, const char *const colSeparator=DEFAULT_COL_SEPARATOR, const char *const rowSeparator=DEFAULT_ROW_SEPARATOR) const
DMatrix getWeights() const
virtual returnValue plot(PlotFrequency _frequency=PLOT_IN_ANY_CASE)
#define USING_NAMESPACE_ACADO
Provides a time grid consisting of vector-valued optimization variables at each grid point...
returnValue printInfo()
returnValue subjectTo(const DifferentialEquation &differentialEquation_)
Definition: ocp.cpp:153
returnValue minimizeMayerTerm(const Expression &arg)
Definition: ocp.cpp:238
returnValue addSubplot(PlotWindowSubplot &_subplot)
returnValue set(OptionsName name, int value)
Definition: options.cpp:126
returnValue getAllControls(const char *fileName) const
returnValue getParetoFront(VariablesGrid &paretoFront) const
Data class for defining optimal control problems.
Definition: ocp.hpp:89
Expression dot(const Expression &arg)
int main()
Definition: car_nbi.cpp:54
virtual returnValue solveSingleObjective(const int &number)
User-interface to formulate and solve optimal control problems with multiple objectives.
returnValue getAllDifferentialStates(const char *fileName) const
Provides an interface to Gnuplot for plotting algorithmic outputs.
returnValue getAllParameters(const char *fileName) const
Allows to setup and evaluate differential equations (ODEs and DAEs) based on SymbolicExpressions.


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Mon Jun 10 2019 12:34:29