|
template<typename DerTypeA , typename DerTypeB > |
const AutoDiffScalar< Matrix< typename internal::traits< DerTypeA >::Scalar, Dynamic, 1 > > | Eigen::atan2 (const AutoDiffScalar< DerTypeA > &a, const AutoDiffScalar< DerTypeB > &b) |
|
template<typename DerType , typename T > |
| Eigen::AutoDiffScalar< DerType > (min)(const AutoDiffScalar< DerType > &x |
|
template<typename DerType , typename T > |
| Eigen::AutoDiffScalar< DerType > (max)(const AutoDiffScalar< DerType > &x |
|
template<typename DerType > |
const AutoDiffScalar< DerType > & | Eigen::conj (const AutoDiffScalar< DerType > &x) |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (abs, using std::abs;return ReturnType(abs(x.value()), x.derivatives()*(x.value()< 0?-1:1));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2 |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sqrt, using std::sqrt;Scalar sqrtx=sqrt(x.value());return ReturnType(sqrtx, x.derivatives()*(Scalar(0.5)/sqrtx));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(cos |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (sin, using std::sin;using std::cos;return ReturnType(sin(x.value()), x.derivatives()*cos(x.value()));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(exp |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (log, using std::log;return ReturnType(log(x.value()), x.derivatives()*(Scalar(1)/x.value()));) template< typename DerType > inline const Eigen |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (tan, using std::tan;using std::cos;return ReturnType(tan(x.value()), x.derivatives()*(Scalar(1)/numext::abs2(cos(x.value()))));) EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(asin |
|
| Eigen::EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY (acos, using std::sqrt;using std::acos;return ReturnType(acos(x.value()), x.derivatives()*(Scalar(-1)/sqrt(1-numext::abs2(x.value()))));) template< typename DerType > struct NumTraits< AutoDiffScalar< DerType > > |
|
template<typename DerType > |
DerType::Scalar | Eigen::imag (const AutoDiffScalar< DerType > &) |
|
template<typename A , typename B > |
void | Eigen::internal::make_coherent (const A &a, const B &b) |
|
template<typename DerType > |
const AutoDiffScalar< DerType > & | Eigen::real (const AutoDiffScalar< DerType > &x) |
|
return | Eigen::ReturnType (abs2(x.value()), x.derivatives()*(Scalar(2)*x.value())) |
|
return | Eigen::ReturnType (cos(x.value()), x.derivatives()*(-sin(x.value()))) |
|
return | Eigen::ReturnType (expx, x.derivatives()*expx) |
|
return | Eigen::ReturnType (asin(x.value()), x.derivatives()*(Scalar(1)/sqrt(1-numext::abs2(x.value())))) |
|