Public Member Functions | Static Public Member Functions | Private Member Functions | Static Private Attributes
find_object::Settings Class Reference

#include <Settings.h>

List of all members.

Public Member Functions

virtual ~Settings ()

Static Public Member Functions

static DescriptorExtractorcreateDescriptorExtractor ()
static cv::flann::IndexParams * createFlannIndexParams ()
static KeypointDetectorcreateKeypointDetector ()
static QString currentDescriptorType ()
static QString currentDetectorType ()
static QString currentNearestNeighborType ()
static const ParametersMapgetDefaultParameters ()
static const DescriptionsMapgetDescriptions ()
static cvflann::flann_distance_t getFlannDistanceType ()
static cv::flann::SearchParams getFlannSearchParams ()
static int getHomographyMethod ()
static QVariant getParameter (const QString &key)
static const ParametersMapgetParameters ()
static const ParametersTypegetParametersType ()
static QString iniDefaultFileName ()
static QString iniDefaultPath ()
static QString iniPath ()
static void init (const QString &fileName)
static bool isBruteForceNearestNeighbor ()
static void loadSettings (const QString &fileName=QString())
static void loadWindowSettings (QByteArray &windowGeometry, QByteArray &windowState, const QString &fileName=QString())
static void resetParameter (const QString &key)
static void saveSettings (const QString &fileName=QString())
static void saveWindowSettings (const QByteArray &windowGeometry, const QByteArray &windowState, const QString &fileName=QString())
static void setParameter (const QString &key, const QVariant &value)
static QString workingDirectory ()

Private Member Functions

 PARAMETER (Camera, 1deviceId, int, 0,"Device ID (default 0).")
 PARAMETER (Camera, 2imageWidth, int, 0,"Image width (0 means default width from camera).")
 PARAMETER (Camera, 3imageHeight, int, 0,"Image height (0 means default height from camera).")
 PARAMETER (Camera, 4imageRate, double, 2.0,"Image rate in Hz (0 Hz means as fast as possible).")
 PARAMETER (Camera, 5mediaPath, QString,"","Video file or directory of images. If set, the camera is not used. See General->videoFormats and General->imageFormats for available formats.")
 PARAMETER (Camera, 6useTcpCamera, bool, false,"Use TCP/IP input camera.")
 PARAMETER (Camera, 8port, int, 0,"The images server's port when useTcpCamera is checked. Only one client at the same time is allowed.")
 PARAMETER (Camera, 9queueSize, int, 1,"Maximum images buffered from TCP. If 0, all images are buffered.")
 PARAMETER (Feature2D, 3MaxFeatures, int, 0,"Maximum features per image. If the number of features extracted is over this threshold, only X features with the highest response are kept. 0 means all features are kept.")
 PARAMETER (Feature2D, 4Affine, bool, false,"(ASIFT) Extract features on multiple affine transformations of the image.")
 PARAMETER (Feature2D, 5AffineCount, int, 6,"(ASIFT) Higher the value, more affine transformations will be done.")
 PARAMETER (Feature2D, Brief_bytes, int, 32,"Bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.")
 PARAMETER (Feature2D, Dense_initFeatureScale, float, 1.f,"")
 PARAMETER (Feature2D, Dense_featureScaleLevels, int, 1,"")
 PARAMETER (Feature2D, Dense_featureScaleMul, float, 0.1f,"")
 PARAMETER (Feature2D, Dense_initXyStep, int, 6,"")
 PARAMETER (Feature2D, Dense_initImgBound, int, 0,"")
 PARAMETER (Feature2D, Dense_varyXyStepWithScale, bool, true,"")
 PARAMETER (Feature2D, Dense_varyImgBoundWithScale, bool, false,"")
 PARAMETER (Feature2D, Fast_threshold, int, 10,"Threshold on difference between intensity of the central pixel and pixels of a circle around this pixel.")
 PARAMETER (Feature2D, Fast_nonmaxSuppression, bool, true,"If true, non-maximum suppression is applied to detected corners (keypoints).")
 PARAMETER (Feature2D, Fast_gpu, bool, false,"GPU-FAST: Use GPU version of FAST. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.")
 PARAMETER (Feature2D, Fast_keypointsRatio, double, 0.05,"Used with FAST GPU.")
 PARAMETER (Feature2D, GFTT_maxCorners, int, 1000,"")
 PARAMETER (Feature2D, GFTT_qualityLevel, double, 0.01,"")
 PARAMETER (Feature2D, GFTT_minDistance, double, 1,"")
 PARAMETER (Feature2D, GFTT_blockSize, int, 3,"")
 PARAMETER (Feature2D, GFTT_useHarrisDetector, bool, false,"")
 PARAMETER (Feature2D, GFTT_k, double, 0.04,"")
 PARAMETER (Feature2D, ORB_nFeatures, int, 500,"The maximum number of features to retain.")
 PARAMETER (Feature2D, ORB_scaleFactor, float, 1.2f,"Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer.")
 PARAMETER (Feature2D, ORB_nLevels, int, 8,"The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels).")
 PARAMETER (Feature2D, ORB_edgeThreshold, int, 31,"This is size of the border where the features are not detected. It should roughly match the patchSize parameter.")
 PARAMETER (Feature2D, ORB_firstLevel, int, 0,"It should be 0 in the current implementation.")
 PARAMETER (Feature2D, ORB_WTA_K, int, 2,"The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 random points (of course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).")
 PARAMETER (Feature2D, ORB_scoreType, int, 0,"The default HARRIS_SCORE=0 means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE=1 is alternative value of the parameter that produces slightly less stable keypoints, but it is a little faster to compute.")
 PARAMETER (Feature2D, ORB_patchSize, int, 31,"size of the patch used by the oriented BRIEF descriptor. Of course, on smaller pyramid layers the perceived image area covered by a feature will be larger.")
 PARAMETER (Feature2D, ORB_gpu, bool, false,"GPU-ORB: Use GPU version of ORB. This option is enabled only if OpenCV is built with CUDA and GPUs are detected.")
 PARAMETER (Feature2D, MSER_delta, int, 5,"")
 PARAMETER (Feature2D, MSER_minArea, int, 60,"")
 PARAMETER (Feature2D, MSER_maxArea, int, 14400,"")
 PARAMETER (Feature2D, MSER_maxVariation, double, 0.25,"")
 PARAMETER (Feature2D, MSER_minDiversity, double, 0.2,"")
 PARAMETER (Feature2D, MSER_maxEvolution, int, 200,"")
 PARAMETER (Feature2D, MSER_areaThreshold, double, 1.01,"")
 PARAMETER (Feature2D, MSER_minMargin, double, 0.003,"")
 PARAMETER (Feature2D, MSER_edgeBlurSize, int, 5,"")
 PARAMETER (Feature2D, Star_maxSize, int, 45,"")
 PARAMETER (Feature2D, Star_responseThreshold, int, 30,"")
 PARAMETER (Feature2D, Star_lineThresholdProjected, int, 10,"")
 PARAMETER (Feature2D, Star_lineThresholdBinarized, int, 8,"")
 PARAMETER (Feature2D, Star_suppressNonmaxSize, int, 5,"")
 PARAMETER (Feature2D, BRISK_thresh, int, 30,"FAST/AGAST detection threshold score.")
 PARAMETER (Feature2D, BRISK_octaves, int, 3,"Detection octaves. Use 0 to do single scale.")
 PARAMETER (Feature2D, BRISK_patternScale, float, 1.0f,"Apply this scale to the pattern used for sampling the neighbourhood of a keypoint.")
 PARAMETER (Feature2D, FREAK_orientationNormalized, bool, true,"Enable orientation normalization.")
 PARAMETER (Feature2D, FREAK_scaleNormalized, bool, true,"Enable scale normalization.")
 PARAMETER (Feature2D, FREAK_patternScale, float, 22.0f,"Scaling of the description pattern.")
 PARAMETER (Feature2D, FREAK_nOctaves, int, 4,"Number of octaves covered by the detected keypoints.")
 PARAMETER (NearestNeighbor, 3nndrRatioUsed, bool, true,"Nearest neighbor distance ratio approach to accept the best match.")
 PARAMETER (NearestNeighbor, 4nndrRatio, float, 0.8f,"Nearest neighbor distance ratio.")
 PARAMETER (NearestNeighbor, 5minDistanceUsed, bool, false,"Minimum distance with the nearest descriptor to accept a match.")
 PARAMETER (NearestNeighbor, 6minDistance, float, 1.6f,"Minimum distance. You can look at top of this panel where minimum and maximum distances are shown to properly set this parameter depending of the descriptor used.")
 PARAMETER (NearestNeighbor, BruteForce_gpu, bool, false,"Brute force GPU")
 PARAMETER (NearestNeighbor, search_checks, int, 32,"The number of times the tree(s) in the index should be recursively traversed. A higher value for this parameter would give better search precision, but also take more time. If automatic configuration was used when the index was created, the number of checks required to achieve the specified precision was also computed, in which case this parameter is ignored.")
 PARAMETER (NearestNeighbor, search_eps, float, 0,"")
 PARAMETER (NearestNeighbor, search_sorted, bool, true,"")
 PARAMETER (NearestNeighbor, KDTree_trees, int, 4,"The number of parallel kd-trees to use. Good values are in the range [1..16].")
 PARAMETER (NearestNeighbor, Composite_trees, int, 4,"The number of parallel kd-trees to use. Good values are in the range [1..16].")
 PARAMETER (NearestNeighbor, Composite_branching, int, 32,"The branching factor to use for the hierarchical k-means tree.")
 PARAMETER (NearestNeighbor, Composite_iterations, int, 11,"The maximum number of iterations to use in the k-means clustering stage when building the k-means tree. A value of -1 used here means that the k-means clustering should be iterated until convergence.")
 PARAMETER (NearestNeighbor, Composite_centers_init, QString,"0:RANDOM;GONZALES;KMEANSPP","The algorithm to use for selecting the initial centers when performing a k-means clustering step. The possible values are CENTERS_RANDOM (picks the initial cluster centers randomly), CENTERS_GONZALES (picks the initial centers using Gonzales’ algorithm) and CENTERS_KMEANSPP (picks the initial centers using the algorithm suggested in arthur_kmeanspp_2007 ).")
 PARAMETER (NearestNeighbor, Composite_cb_index, double, 0.2,"This parameter (cluster boundary index) influences the way exploration is performed in the hierarchical kmeans tree. When cb_index is zero the next kmeans domain to be explored is chosen to be the one with the closest center. A value greater then zero also takes into account the size of the domain.")
 PARAMETER (NearestNeighbor, Autotuned_target_precision, double, 0.8,"Is a number between 0 and 1 specifying the percentage of the approximate nearest-neighbor searches that return the exact nearest-neighbor. Using a higher value for this parameter gives more accurate results, but the search takes longer. The optimum value usually depends on the application.")
 PARAMETER (NearestNeighbor, Autotuned_build_weight, double, 0.01,"Specifies the importance of the index build time raported to the nearest-neighbor search time. In some applications it’s acceptable for the index build step to take a long time if the subsequent searches in the index can be performed very fast. In other applications it’s required that the index be build as fast as possible even if that leads to slightly longer search times.")
 PARAMETER (NearestNeighbor, Autotuned_memory_weight, double, 0,"Is used to specify the tradeoff between time (index build time and search time) and memory used by the index. A value less than 1 gives more importance to the time spent and a value greater than 1 gives more importance to the memory usage.")
 PARAMETER (NearestNeighbor, Autotuned_sample_fraction, double, 0.1,"Is a number between 0 and 1 indicating what fraction of the dataset to use in the automatic parameter configuration algorithm. Running the algorithm on the full dataset gives the most accurate results, but for very large datasets can take longer than desired. In such case using just a fraction of the data helps speeding up this algorithm while still giving good approximations of the optimum parameters.")
 PARAMETER (NearestNeighbor, KMeans_branching, int, 32,"The branching factor to use for the hierarchical k-means tree.")
 PARAMETER (NearestNeighbor, KMeans_iterations, int, 11,"The maximum number of iterations to use in the k-means clustering stage when building the k-means tree. A value of -1 used here means that the k-means clustering should be iterated until convergence.")
 PARAMETER (NearestNeighbor, KMeans_centers_init, QString,"0:RANDOM;GONZALES;KMEANSPP","The algorithm to use for selecting the initial centers when performing a k-means clustering step. The possible values are CENTERS_RANDOM (picks the initial cluster centers randomly), CENTERS_GONZALES (picks the initial centers using Gonzales’ algorithm) and CENTERS_KMEANSPP (picks the initial centers using the algorithm suggested in arthur_kmeanspp_2007 ).")
 PARAMETER (NearestNeighbor, KMeans_cb_index, double, 0.2,"This parameter (cluster boundary index) influences the way exploration is performed in the hierarchical kmeans tree. When cb_index is zero the next kmeans domain to be explored is chosen to be the one with the closest center. A value greater then zero also takes into account the size of the domain.")
 PARAMETER (NearestNeighbor, Lsh_table_number, int, 12,"The number of hash tables to use (between 10 and 30 usually).")
 PARAMETER (NearestNeighbor, Lsh_key_size, int, 20,"The size of the hash key in bits (between 10 and 20 usually).")
 PARAMETER (NearestNeighbor, Lsh_multi_probe_level, int, 2,"The number of bits to shift to check for neighboring buckets (0 is regular LSH, 2 is recommended).")
 PARAMETER (General, autoStartCamera, bool, false,"Automatically start the camera when the application is opened.")
 PARAMETER (General, autoUpdateObjects, bool, true,"Automatically update objects on every parameter changes, otherwise you would need to press \"Update objects\" on the objects panel.")
 PARAMETER (General, nextObjID, uint, 1,"Next object ID to use.")
 PARAMETER (General, imageFormats, QString,"*.png *.jpg *.bmp *.tiff *.ppm *.pgm","Image formats supported.")
 PARAMETER (General, videoFormats, QString,"*.avi *.m4v *.mp4","Video formats supported.")
 PARAMETER (General, mirrorView, bool, true,"Flip the camera image horizontally (like all webcam applications).")
 PARAMETER (General, invertedSearch, bool, true,"Instead of matching descriptors from the objects to those in a vocabulary created with descriptors extracted from the scene, we create a vocabulary from all the objects' descriptors and we match scene's descriptors to this vocabulary. It is the inverted search mode.")
 PARAMETER (General, controlsShown, bool, false,"Show play/image seek controls (useful with video file and directory of images modes).")
 PARAMETER (General, threads, int, 1,"Number of threads used for objects matching and homography computation. 0 means as many threads as objects. On InvertedSearch mode, multi-threading has only effect on homography computation.")
 PARAMETER (General, multiDetection, bool, false,"Multiple detection of the same object.")
 PARAMETER (General, multiDetectionRadius, int, 30,"Ignore detection of the same object in X pixels radius of the previous detections.")
 PARAMETER (General, autoScroll, bool, true,"Auto scroll to detected object in Objects panel.")
 PARAMETER (General, vocabularyIncremental, bool, false,"The vocabulary is created incrementally. When new objects are added, their descriptors are compared to those already in vocabulary to find if the visual word already exist or not. \"NearestNeighbor/nndrRatio\" is used to compare descriptors.")
 PARAMETER (General, vocabularyUpdateMinWords, int, 2000,"When the vocabulary is incremental (see \"General/vocabularyIncremental\"), after X words added to vocabulary, the internal index is updated with new words. This parameter lets avoiding to reconstruct the whole nearest neighbor index after each time descriptors of an object are added to vocabulary. 0 means no incremental update.")
 PARAMETER (General, sendNoObjDetectedEvents, bool, true,"When there are no objects detected, send an empty object detection event.")
 PARAMETER (General, autoPauseOnDetection, bool, false,"Auto pause the camera when an object is detected.")
 PARAMETER (Homography, homographyComputed, bool, true,"Compute homography? On ROS, this is required to publish objects detected.")
 PARAMETER (Homography, method, QString,"1:LMEDS;RANSAC","Type of the robust estimation algorithm: least-median algorithm or RANSAC algorithm.")
 PARAMETER (Homography, ransacReprojThr, double, 5.0,"Maximum allowed reprojection error to treat a point pair as an inlier (used in the RANSAC method only). It usually makes sense to set this parameter somewhere in the range of 1 to 10.")
 PARAMETER (Homography, minimumInliers, int, 10,"Minimum inliers to accept the homography. Value must be >= 4.")
 PARAMETER (Homography, ignoreWhenAllInliers, bool, false,"Ignore homography when all features are inliers (sometimes when the homography doesn't converge, it returns the best homography with all features as inliers).")
 PARAMETER (Homography, rectBorderWidth, int, 4,"Homography rectangle border width.")
 PARAMETER (Homography, allCornersVisible, bool, false,"All corners of the detected object must be visible in the scene.")
 PARAMETER (Homography, minAngle, int, 0,"(Degrees) Homography minimum angle. Set 0 to disable. When the angle is very small, this is a good indication that the homography is wrong. A good value is over 60 degrees.")
 PARAMETER_COND (Feature2D, 1Detector, QString, FINDOBJECT_NONFREE,"7:Dense;Fast;GFTT;MSER;ORB;SIFT;Star;SURF;BRISK","1:Dense;Fast;GFTT;MSER;ORB;SIFT;Star;SURF;BRISK","Keypoint detector.")
 PARAMETER_COND (Feature2D, 2Descriptor, QString, FINDOBJECT_NONFREE,"3:Brief;ORB;SIFT;SURF;BRISK;FREAK","0:Brief;ORB;SIFT;SURF;BRISK;FREAK","Keypoint descriptor.")
 PARAMETER_COND (NearestNeighbor, 1Strategy, QString, FINDOBJECT_NONFREE,"1:Linear;KDTree;KMeans;Composite;Autotuned;Lsh;BruteForce","6:Linear;KDTree;KMeans;Composite;Autotuned;Lsh;BruteForce","Nearest neighbor strategy.")
 PARAMETER_COND (NearestNeighbor, 2Distance_type, QString, FINDOBJECT_NONFREE,"0:EUCLIDEAN_L2;MANHATTAN_L1;MINKOWSKI;MAX;HIST_INTERSECT;HELLINGER;CHI_SQUARE_CS;KULLBACK_LEIBLER_KL;HAMMING","1:EUCLIDEAN_L2;MANHATTAN_L1;MINKOWSKI;MAX;HIST_INTERSECT;HELLINGER;CHI_SQUARE_CS;KULLBACK_LEIBLER_KL;HAMMING","Distance type.")
 Settings ()

Static Private Attributes

static ParametersMap defaultParameters_
static DescriptionsMap descriptions_
static Settings dummyInit_
static QString iniPath_
static ParametersMap parameters_
static ParametersType parametersType_

Detailed Description

Definition at line 105 of file Settings.h.


Constructor & Destructor Documentation

virtual find_object::Settings::~Settings ( ) [inline, virtual]

Definition at line 260 of file Settings.h.

find_object::Settings::Settings ( ) [inline, private]

Definition at line 297 of file Settings.h.


Member Function Documentation

Definition at line 643 of file Settings.cpp.

cv::flann::IndexParams * find_object::Settings::createFlannIndexParams ( ) [static]

Definition at line 816 of file Settings.cpp.

Definition at line 459 of file Settings.cpp.

Definition at line 783 of file Settings.cpp.

Definition at line 777 of file Settings.cpp.

Definition at line 789 of file Settings.cpp.

static const ParametersMap& find_object::Settings::getDefaultParameters ( ) [inline, static]

Definition at line 274 of file Settings.h.

static const DescriptionsMap& find_object::Settings::getDescriptions ( ) [inline, static]

Definition at line 277 of file Settings.h.

cvflann::flann_distance_t find_object::Settings::getFlannDistanceType ( ) [static]

Definition at line 930 of file Settings.cpp.

cv::flann::SearchParams find_object::Settings::getFlannSearchParams ( ) [static]

Definition at line 951 of file Settings.cpp.

Definition at line 959 of file Settings.cpp.

static QVariant find_object::Settings::getParameter ( const QString &  key) [inline, static]

Definition at line 280 of file Settings.h.

static const ParametersMap& find_object::Settings::getParameters ( ) [inline, static]

Definition at line 275 of file Settings.h.

static const ParametersType& find_object::Settings::getParametersType ( ) [inline, static]

Definition at line 276 of file Settings.h.

static QString find_object::Settings::iniDefaultFileName ( ) [inline, static]

Definition at line 264 of file Settings.h.

Definition at line 61 of file Settings.cpp.

QString find_object::Settings::iniPath ( ) [static]

Definition at line 70 of file Settings.cpp.

void find_object::Settings::init ( const QString &  fileName) [static]

Definition at line 79 of file Settings.cpp.

Definition at line 795 of file Settings.cpp.

void find_object::Settings::loadSettings ( const QString &  fileName = QString()) [static]

Definition at line 85 of file Settings.cpp.

void find_object::Settings::loadWindowSettings ( QByteArray &  windowGeometry,
QByteArray &  windowState,
const QString &  fileName = QString() 
) [static]

Definition at line 180 of file Settings.cpp.

find_object::Settings::PARAMETER ( Camera  ,
1deviceId  ,
int  ,
,
"Device ID (default 0)."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
2imageWidth  ,
int  ,
,
"Image width (0 means default width from camera)."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
3imageHeight  ,
int  ,
,
"Image height (0 means default height from camera)."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
4imageRate  ,
double  ,
2.  0,
"Image rate in Hz (0 Hz means as fast as possible)."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
5mediaPath  ,
QString  ,
""  ,
"Video file or directory of images. If  set,
the camera is not used.See General->videoFormats and General->imageFormats for available formats."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
6useTcpCamera  ,
bool  ,
false  ,
"Use TCP/IP input camera."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
8port  ,
int  ,
,
"The images server's port when useTcpCamera is checked. Only one client at the same time is allowed."   
) [private]
find_object::Settings::PARAMETER ( Camera  ,
9queueSize  ,
int  ,
,
"Maximum images buffered from TCP. If  0,
all images are buffered."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
3MaxFeatures  ,
int  ,
,
"Maximum features per image. If the number of features extracted is over this  threshold,
only X features with the highest response are kept.0 means all features are kept."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
4Affine  ,
bool  ,
false  ,
"(ASIFT) Extract features on multiple affine transformations of the image."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
5AffineCount  ,
int  ,
,
"(ASIFT) Higher the  value,
more affine transformations will be done."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Brief_bytes  ,
int  ,
32  ,
"Bytes is a length of descriptor in bytes. It can be equal  16,
32 or 64 bytes."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_initFeatureScale  ,
float  ,
1.  f,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_featureScaleLevels  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_featureScaleMul  ,
float  ,
0.  1f,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_initXyStep  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_initImgBound  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_varyXyStepWithScale  ,
bool  ,
true  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Dense_varyImgBoundWithScale  ,
bool  ,
false  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Fast_threshold  ,
int  ,
10  ,
"Threshold on difference between intensity of the central pixel and pixels of a circle around this pixel."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Fast_nonmaxSuppression  ,
bool  ,
true  ,
"If  true,
non-maximum suppression is applied to detected corners(keypoints)."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Fast_gpu  ,
bool  ,
false  ,
"GPU-FAST: Use GPU version of FAST. This option is enabled only if OpenCV is built with CUDA and GPUs are detected."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Fast_keypointsRatio  ,
double  ,
0.  05,
"Used with FAST GPU."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
GFTT_maxCorners  ,
int  ,
1000  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
GFTT_qualityLevel  ,
double  ,
0.  01,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
GFTT_minDistance  ,
double  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
GFTT_blockSize  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
GFTT_useHarrisDetector  ,
bool  ,
false  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
GFTT_k  ,
double  ,
0.  04,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_nFeatures  ,
int  ,
500  ,
"The maximum number of features to retain."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_scaleFactor  ,
float  ,
1.  2f,
"Pyramid decimation  ratio,
greater than 1.  scaleFactor = =2 means the classical pyramid,
where each next level has 4x less pixels than the  previous,
but such a big scale factor will degrade feature matching scores dramatically.On the other  hand,
too close to 1 scale factor will mean that to cover certain scale range you will need more pyramid levels and so the speed will suffer."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_nLevels  ,
int  ,
,
"The number of pyramid levels. The smallest level will have linear size equal to input_image_linear_size/pow(scaleFactor, nlevels)."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_edgeThreshold  ,
int  ,
31  ,
"This is size of the border where the features are not detected. It should roughly match the patchSize parameter."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_firstLevel  ,
int  ,
,
"It should be 0 in the current implementation."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_WTA_K  ,
int  ,
,
"The number of points that produce each element of the oriented BRIEF descriptor. The default value 2 means the BRIEF where we take a random point pair and compare their  brightnesses,
so we get 0/1 response.Other possible values are 3 and 4.For  example,
3 means that we take 3 random   pointsof course, those point coordinates are random, but they are generated from the pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel rectangle,
find point of maximum brightness and output index of the winner(0, 1 or 2).Such output will occupy 2  bits,
and therefore it will need a special variant of Hamming  distance,
denoted as NORM_HAMMING2(2 bits per bin).When  WTA_K = 4,
we take 4 random points to compute each bin(that will also occupy 2 bits with possible values 0, 1, 2 or 3)."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_scoreType  ,
int  ,
,
"The default  HARRIS_SCORE = 0 means that Harris algorithm is used to rank features (the score is written to KeyPoint::score and is used to retain best nfeatures features); FAST_SCORE=1 is alternative value of the parameter that produces slightly less stable keypoints,
but it is a little faster to compute."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_patchSize  ,
int  ,
31  ,
"size of the patch used by the oriented BRIEF descriptor. Of  course,
on smaller pyramid layers the perceived image area covered by a feature will be larger."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
ORB_gpu  ,
bool  ,
false  ,
"GPU-ORB: Use GPU version of ORB. This option is enabled only if OpenCV is built with CUDA and GPUs are detected."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_delta  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_minArea  ,
int  ,
60  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_maxArea  ,
int  ,
14400  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_maxVariation  ,
double  ,
0.  25,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_minDiversity  ,
double  ,
0.  2,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_maxEvolution  ,
int  ,
200  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_areaThreshold  ,
double  ,
1.  01,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_minMargin  ,
double  ,
0.  003,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
MSER_edgeBlurSize  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Star_maxSize  ,
int  ,
45  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Star_responseThreshold  ,
int  ,
30  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Star_lineThresholdProjected  ,
int  ,
10  ,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Star_lineThresholdBinarized  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
Star_suppressNonmaxSize  ,
int  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
BRISK_thresh  ,
int  ,
30  ,
"FAST/AGAST detection threshold score."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
BRISK_octaves  ,
int  ,
,
"Detection octaves. Use 0 to do single scale."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
BRISK_patternScale  ,
float  ,
1.  0f,
"Apply this scale to the pattern used for sampling the neighbourhood of a keypoint."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
FREAK_orientationNormalized  ,
bool  ,
true  ,
"Enable orientation normalization."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
FREAK_scaleNormalized  ,
bool  ,
true  ,
"Enable scale normalization."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
FREAK_patternScale  ,
float  ,
22.  0f,
"Scaling of the description pattern."   
) [private]
find_object::Settings::PARAMETER ( Feature2D  ,
FREAK_nOctaves  ,
int  ,
,
"Number of octaves covered by the detected keypoints."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
3nndrRatioUsed  ,
bool  ,
true  ,
"Nearest neighbor distance ratio approach to accept the best match."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
4nndrRatio  ,
float  ,
0.  8f,
"Nearest neighbor distance ratio."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
5minDistanceUsed  ,
bool  ,
false  ,
"Minimum distance with the nearest descriptor to accept a match."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
6minDistance  ,
float  ,
1.  6f,
"Minimum distance. You can look at top of this panel where minimum and maximum distances are shown to properly set this parameter depending of the descriptor used."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
BruteForce_gpu  ,
bool  ,
false  ,
"Brute force GPU"   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
search_checks  ,
int  ,
32  ,
"The number of times the tree(s) in the index should be recursively traversed. A higher value for this parameter would give better search  precision,
but also take more time.If automatic configuration was used when the index was  created,
the number of checks required to achieve the specified precision was also  computed,
in which case this parameter is ignored."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
search_eps  ,
float  ,
,
""   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
search_sorted  ,
bool  ,
true  ,
""   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
KDTree_trees  ,
int  ,
,
"The number of parallel kd-trees to use. Good values are in the range ."  [1..16] 
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Composite_trees  ,
int  ,
,
"The number of parallel kd-trees to use. Good values are in the range ."  [1..16] 
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Composite_branching  ,
int  ,
32  ,
"The branching factor to use for the hierarchical k-means tree."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Composite_iterations  ,
int  ,
11  ,
"The maximum number of iterations to use in the k-means clustering stage when building the k-means tree. A value of -1 used here means that the k-means clustering should be iterated until convergence."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Composite_centers_init  ,
QString  ,
"0:RANDOM;GONZALES;KMEANSPP"  ,
"The algorithm to use for selecting the initial centers when performing a k-means clustering step. The possible values are CENTERS_RANDOM   picks the initial cluster centers randomly,
CENTERS_GONZALES(picks the initial centers using Gonzales’ algorithm) and CENTERS_KMEANSPP(picks the initial centers using the algorithm suggested in arthur_kmeanspp_2007)."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Composite_cb_index  ,
double  ,
0.  2,
"This parameter (cluster boundary index) influences the way exploration is performed in the hierarchical kmeans tree. When cb_index is zero the next kmeans domain to be explored is chosen to be the one with the closest center. A value greater then zero also takes into account the size of the domain."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Autotuned_target_precision  ,
double  ,
0.  8,
"Is a number between 0 and 1 specifying the percentage of the approximate nearest-neighbor searches that return the exact nearest-neighbor. Using a higher value for this parameter gives more accurate  results,
but the search takes longer.The optimum value usually depends on the application."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Autotuned_build_weight  ,
double  ,
0.  01,
"Specifies the importance of the index build time raported to the nearest-neighbor search time. In some applications it’s acceptable for the index build step to take a long time if the subsequent searches in the index can be performed very fast. In other applications it’s required that the index be build as fast as possible even if that leads to slightly longer search times."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Autotuned_memory_weight  ,
double  ,
,
"Is used to specify the tradeoff between time (index build time and search time) and memory used by the index. A value less than 1 gives more importance to the time spent and a value greater than 1 gives more importance to the memory usage."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Autotuned_sample_fraction  ,
double  ,
0.  1,
"Is a number between 0 and 1 indicating what fraction of the dataset to use in the automatic parameter configuration algorithm. Running the algorithm on the full dataset gives the most accurate  results,
but for very large datasets can take longer than desired.In such case using just a fraction of the data helps speeding up this algorithm while still giving good approximations of the optimum parameters."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
KMeans_branching  ,
int  ,
32  ,
"The branching factor to use for the hierarchical k-means tree."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
KMeans_iterations  ,
int  ,
11  ,
"The maximum number of iterations to use in the k-means clustering stage when building the k-means tree. A value of -1 used here means that the k-means clustering should be iterated until convergence."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
KMeans_centers_init  ,
QString  ,
"0:RANDOM;GONZALES;KMEANSPP"  ,
"The algorithm to use for selecting the initial centers when performing a k-means clustering step. The possible values are CENTERS_RANDOM   picks the initial cluster centers randomly,
CENTERS_GONZALES(picks the initial centers using Gonzales’ algorithm) and CENTERS_KMEANSPP(picks the initial centers using the algorithm suggested in arthur_kmeanspp_2007)."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
KMeans_cb_index  ,
double  ,
0.  2,
"This parameter (cluster boundary index) influences the way exploration is performed in the hierarchical kmeans tree. When cb_index is zero the next kmeans domain to be explored is chosen to be the one with the closest center. A value greater then zero also takes into account the size of the domain."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Lsh_table_number  ,
int  ,
12  ,
"The number of hash tables to use (between 10 and 30 usually)."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Lsh_key_size  ,
int  ,
20  ,
"The size of the hash key in bits (between 10 and 20 usually)."   
) [private]
find_object::Settings::PARAMETER ( NearestNeighbor  ,
Lsh_multi_probe_level  ,
int  ,
,
"The number of bits to shift to check for neighboring buckets (0 is regular LSH, 2 is recommended)."   
) [private]
find_object::Settings::PARAMETER ( General  ,
autoStartCamera  ,
bool  ,
false  ,
"Automatically start the camera when the application is opened."   
) [private]
find_object::Settings::PARAMETER ( General  ,
autoUpdateObjects  ,
bool  ,
true  ,
"Automatically update objects on every parameter  changes,
otherwise you would need to press\"Update objects\" on the objects panel."   
) [private]
find_object::Settings::PARAMETER ( General  ,
nextObjID  ,
uint  ,
,
"Next object ID to use."   
) [private]
find_object::Settings::PARAMETER ( General  ,
imageFormats  ,
QString  ,
"*.png *.jpg *.bmp *.tiff *.ppm *.pgm"  ,
"Image formats supported."   
) [private]
find_object::Settings::PARAMETER ( General  ,
videoFormats  ,
QString  ,
"*.avi *.m4v *.mp4"  ,
"Video formats supported."   
) [private]
find_object::Settings::PARAMETER ( General  ,
mirrorView  ,
bool  ,
true  ,
"Flip the camera image horizontally (like all webcam applications)."   
) [private]
find_object::Settings::PARAMETER ( General  ,
invertedSearch  ,
bool  ,
true  ,
"Instead of matching descriptors from the objects to those in a vocabulary created with descriptors extracted from the  scene,
we create a vocabulary from all the objects'descriptors and we match scene's descriptors to this vocabulary.It is the inverted search mode."   
) [private]
find_object::Settings::PARAMETER ( General  ,
controlsShown  ,
bool  ,
false  ,
"Show play/image seek controls (useful with video file and directory of images modes)."   
) [private]
find_object::Settings::PARAMETER ( General  ,
threads  ,
int  ,
,
"Number of threads used for objects matching and homography computation. 0 means as many threads as objects. On InvertedSearch  mode,
multi-threading has only effect on homography computation."   
) [private]
find_object::Settings::PARAMETER ( General  ,
multiDetection  ,
bool  ,
false  ,
"Multiple detection of the same object."   
) [private]
find_object::Settings::PARAMETER ( General  ,
multiDetectionRadius  ,
int  ,
30  ,
"Ignore detection of the same object in X pixels radius of the previous detections."   
) [private]
find_object::Settings::PARAMETER ( General  ,
autoScroll  ,
bool  ,
true  ,
"Auto scroll to detected object in Objects panel."   
) [private]
find_object::Settings::PARAMETER ( General  ,
vocabularyIncremental  ,
bool  ,
false  ,
"The vocabulary is created incrementally. When new objects are  added,
their descriptors are compared to those already in vocabulary to find if the visual word already exist or not.\"NearestNeighbor/nndrRatio\" is used to compare descriptors."   
) [private]
find_object::Settings::PARAMETER ( General  ,
vocabularyUpdateMinWords  ,
int  ,
2000  ,
"When the vocabulary is incremental   see \"General/vocabularyIncremental\",
after X words added to  vocabulary,
the internal index is updated with new words.This parameter lets avoiding to reconstruct the whole nearest neighbor index after each time descriptors of an object are added to vocabulary.0 means no incremental update."   
) [private]
find_object::Settings::PARAMETER ( General  ,
sendNoObjDetectedEvents  ,
bool  ,
true  ,
"When there are no objects  detected,
send an empty object detection event."   
) [private]
find_object::Settings::PARAMETER ( General  ,
autoPauseOnDetection  ,
bool  ,
false  ,
"Auto pause the camera when an object is detected."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
homographyComputed  ,
bool  ,
true  ,
"Compute homography? On  ROS,
this is required to publish objects detected."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
method  ,
QString  ,
"1:LMEDS;RANSAC"  ,
"Type of the robust estimation algorithm: least-median algorithm or RANSAC algorithm."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
ransacReprojThr  ,
double  ,
5.  0,
"Maximum allowed reprojection error to treat a point pair as an inlier (used in the RANSAC method only). It usually makes sense to set this parameter somewhere in the range of 1 to 10."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
minimumInliers  ,
int  ,
10  ,
"Minimum inliers to accept the homography. Value must be >= 4."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
ignoreWhenAllInliers  ,
bool  ,
false  ,
"Ignore homography when all features are inliers (sometimes when the homography doesn't converge, it returns the best homography with all features as inliers)."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
rectBorderWidth  ,
int  ,
,
"Homography rectangle border width."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
allCornersVisible  ,
bool  ,
false  ,
"All corners of the detected object must be visible in the scene."   
) [private]
find_object::Settings::PARAMETER ( Homography  ,
minAngle  ,
int  ,
,
"(Degrees) Homography minimum angle. Set 0 to disable. When the angle is very  small,
this is a good indication that the homography is wrong.A good value is over 60 degrees."   
) [private]
find_object::Settings::PARAMETER_COND ( Feature2D  ,
1Detector  ,
QString  ,
FINDOBJECT_NONFREE  ,
"7:Dense;Fast;GFTT;MSER;ORB;SIFT;Star;SURF;BRISK"  ,
"1:Dense;Fast;GFTT;MSER;ORB;SIFT;Star;SURF;BRISK"  ,
"Keypoint detector."   
) [private]
find_object::Settings::PARAMETER_COND ( Feature2D  ,
2Descriptor  ,
QString  ,
FINDOBJECT_NONFREE  ,
"3:Brief;ORB;SIFT;SURF;BRISK;FREAK"  ,
"0:Brief;ORB;SIFT;SURF;BRISK;FREAK"  ,
"Keypoint descriptor."   
) [private]
find_object::Settings::PARAMETER_COND ( NearestNeighbor  ,
1Strategy  ,
QString  ,
FINDOBJECT_NONFREE  ,
"1:Linear;KDTree;KMeans;Composite;Autotuned;Lsh;BruteForce"  ,
"6:Linear;KDTree;KMeans;Composite;Autotuned;Lsh;BruteForce"  ,
"Nearest neighbor strategy."   
) [private]
find_object::Settings::PARAMETER_COND ( NearestNeighbor  ,
2Distance_type  ,
QString  ,
FINDOBJECT_NONFREE  ,
"0:EUCLIDEAN_L2;MANHATTAN_L1;MINKOWSKI;MAX;HIST_INTERSECT;HELLINGER;CHI_SQUARE_CS;KULLBACK_LEIBLER_KL;HAMMING"  ,
"1:EUCLIDEAN_L2;MANHATTAN_L1;MINKOWSKI;MAX;HIST_INTERSECT;HELLINGER;CHI_SQUARE_CS;KULLBACK_LEIBLER_KL;HAMMING"  ,
"Distance type."   
) [private]
static void find_object::Settings::resetParameter ( const QString &  key) [inline, static]

Definition at line 279 of file Settings.h.

void find_object::Settings::saveSettings ( const QString &  fileName = QString()) [static]

Definition at line 208 of file Settings.cpp.

void find_object::Settings::saveWindowSettings ( const QByteArray &  windowGeometry,
const QByteArray &  windowState,
const QString &  fileName = QString() 
) [static]

Definition at line 234 of file Settings.cpp.

static void find_object::Settings::setParameter ( const QString &  key,
const QVariant &  value 
) [inline, static]

Definition at line 278 of file Settings.h.

Definition at line 52 of file Settings.cpp.


Member Data Documentation

Definition at line 300 of file Settings.h.

Definition at line 303 of file Settings.h.

Definition at line 304 of file Settings.h.

QString find_object::Settings::iniPath_ [static, private]

Definition at line 305 of file Settings.h.

Definition at line 301 of file Settings.h.

Definition at line 302 of file Settings.h.


The documentation for this class was generated from the following files:


find_object_2d
Author(s): Mathieu Labbe
autogenerated on Thu Feb 11 2016 22:57:57