Go to the documentation of this file.00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 #ifndef MULTIVARIATE_GAUSSIAN_H_
00038 #define MULTIVARIATE_GAUSSIAN_H_
00039 
00040 #include <eigen3/Eigen/Core>
00041 #include <eigen3/Eigen/Cholesky>
00042 #include <boost/random/variate_generator.hpp>
00043 #include <boost/random/normal_distribution.hpp>
00044 #include <boost/random/mersenne_twister.hpp>
00045 #include <cstdlib>
00046 
00047 namespace chomp
00048 {
00052 class MultivariateGaussian
00053 {
00054 public:
00055   template <typename Derived1, typename Derived2>
00056   MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean, const Eigen::MatrixBase<Derived2>& covariance);
00057 
00058   template <typename Derived>
00059   void sample(Eigen::MatrixBase<Derived>& output);
00060 
00061 private:
00062   Eigen::VectorXd mean_;                
00063   Eigen::MatrixXd covariance_;          
00064   Eigen::MatrixXd covariance_cholesky_; 
00066   int size_;
00067   boost::mt19937 rng_;
00068   boost::normal_distribution<> normal_dist_;
00069   boost::variate_generator<boost::mt19937, boost::normal_distribution<> > gaussian_;
00070 };
00071 
00073 
00074 template <typename Derived1, typename Derived2>
00075 MultivariateGaussian::MultivariateGaussian(const Eigen::MatrixBase<Derived1>& mean,
00076                                            const Eigen::MatrixBase<Derived2>& covariance)
00077   : mean_(mean)
00078   , covariance_(covariance)
00079   , covariance_cholesky_(covariance_.llt().matrixL())
00080   , normal_dist_(0.0, 1.0)
00081   , gaussian_(rng_, normal_dist_)
00082 {
00083   rng_.seed(rand());
00084   size_ = mean.rows();
00085 }
00086 
00087 template <typename Derived>
00088 void MultivariateGaussian::sample(Eigen::MatrixBase<Derived>& output)
00089 {
00090   for (int i = 0; i < size_; ++i)
00091     output(i) = gaussian_();
00092   output = mean_ + covariance_cholesky_ * output;
00093 }
00094 }
00095 
00096 #endif