Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010 #ifndef EIGEN_ROTATION2D_H
00011 #define EIGEN_ROTATION2D_H
00012
00013 namespace Eigen {
00014
00032 namespace internal {
00033
00034 template<typename _Scalar> struct traits<Rotation2D<_Scalar> >
00035 {
00036 typedef _Scalar Scalar;
00037 };
00038 }
00039
00040 template<typename _Scalar>
00041 class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2>
00042 {
00043 typedef RotationBase<Rotation2D<_Scalar>,2> Base;
00044
00045 public:
00046
00047 using Base::operator*;
00048
00049 enum { Dim = 2 };
00051 typedef _Scalar Scalar;
00052 typedef Matrix<Scalar,2,1> Vector2;
00053 typedef Matrix<Scalar,2,2> Matrix2;
00054
00055 protected:
00056
00057 Scalar m_angle;
00058
00059 public:
00060
00062 inline Rotation2D(const Scalar& a) : m_angle(a) {}
00063
00065 Rotation2D() {}
00066
00068 inline Scalar angle() const { return m_angle; }
00069
00071 inline Scalar& angle() { return m_angle; }
00072
00074 inline Rotation2D inverse() const { return -m_angle; }
00075
00077 inline Rotation2D operator*(const Rotation2D& other) const
00078 { return m_angle + other.m_angle; }
00079
00081 inline Rotation2D& operator*=(const Rotation2D& other)
00082 { m_angle += other.m_angle; return *this; }
00083
00085 Vector2 operator* (const Vector2& vec) const
00086 { return toRotationMatrix() * vec; }
00087
00088 template<typename Derived>
00089 Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
00090 Matrix2 toRotationMatrix() const;
00091
00095 inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
00096 { return m_angle * (1-t) + other.angle() * t; }
00097
00103 template<typename NewScalarType>
00104 inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
00105 { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
00106
00108 template<typename OtherScalarType>
00109 inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
00110 {
00111 m_angle = Scalar(other.angle());
00112 }
00113
00114 static inline Rotation2D Identity() { return Rotation2D(0); }
00115
00120 bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
00121 { return internal::isApprox(m_angle,other.m_angle, prec); }
00122 };
00123
00126 typedef Rotation2D<float> Rotation2Df;
00129 typedef Rotation2D<double> Rotation2Dd;
00130
00135 template<typename Scalar>
00136 template<typename Derived>
00137 Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
00138 {
00139 using std::atan2;
00140 EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
00141 m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
00142 return *this;
00143 }
00144
00147 template<typename Scalar>
00148 typename Rotation2D<Scalar>::Matrix2
00149 Rotation2D<Scalar>::toRotationMatrix(void) const
00150 {
00151 using std::sin;
00152 using std::cos;
00153 Scalar sinA = sin(m_angle);
00154 Scalar cosA = cos(m_angle);
00155 return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
00156 }
00157
00158 }
00159
00160 #endif // EIGEN_ROTATION2D_H