00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011 #ifndef EIGEN_QUATERNION_H
00012 #define EIGEN_QUATERNION_H
00013 namespace Eigen {
00014
00015
00016
00017
00018
00019
00020
00021 namespace internal {
00022 template<typename Other,
00023 int OtherRows=Other::RowsAtCompileTime,
00024 int OtherCols=Other::ColsAtCompileTime>
00025 struct quaternionbase_assign_impl;
00026 }
00027
00034 template<class Derived>
00035 class QuaternionBase : public RotationBase<Derived, 3>
00036 {
00037 typedef RotationBase<Derived, 3> Base;
00038 public:
00039 using Base::operator*;
00040 using Base::derived;
00041
00042 typedef typename internal::traits<Derived>::Scalar Scalar;
00043 typedef typename NumTraits<Scalar>::Real RealScalar;
00044 typedef typename internal::traits<Derived>::Coefficients Coefficients;
00045 enum {
00046 Flags = Eigen::internal::traits<Derived>::Flags
00047 };
00048
00049
00051 typedef Matrix<Scalar,3,1> Vector3;
00053 typedef Matrix<Scalar,3,3> Matrix3;
00055 typedef AngleAxis<Scalar> AngleAxisType;
00056
00057
00058
00060 inline Scalar x() const { return this->derived().coeffs().coeff(0); }
00062 inline Scalar y() const { return this->derived().coeffs().coeff(1); }
00064 inline Scalar z() const { return this->derived().coeffs().coeff(2); }
00066 inline Scalar w() const { return this->derived().coeffs().coeff(3); }
00067
00069 inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
00071 inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
00073 inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
00075 inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
00076
00078 inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
00079
00081 inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
00082
00084 inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
00085
00087 inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
00088
00089 EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
00090 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
00091
00092
00093
00094
00095
00096
00097
00098
00099 Derived& operator=(const AngleAxisType& aa);
00100 template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
00101
00105 static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(1, 0, 0, 0); }
00106
00109 inline QuaternionBase& setIdentity() { coeffs() << 0, 0, 0, 1; return *this; }
00110
00114 inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
00115
00119 inline Scalar norm() const { return coeffs().norm(); }
00120
00123 inline void normalize() { coeffs().normalize(); }
00126 inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
00127
00133 template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
00134
00135 template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
00136
00138 Matrix3 toRotationMatrix() const;
00139
00141 template<typename Derived1, typename Derived2>
00142 Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
00143
00144 template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
00145 template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
00146
00148 Quaternion<Scalar> inverse() const;
00149
00151 Quaternion<Scalar> conjugate() const;
00152
00153 template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
00154
00159 template<class OtherDerived>
00160 bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
00161 { return coeffs().isApprox(other.coeffs(), prec); }
00162
00164 EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
00165
00171 template<typename NewScalarType>
00172 inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
00173 {
00174 return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
00175 }
00176
00177 #ifdef EIGEN_QUATERNIONBASE_PLUGIN
00178 # include EIGEN_QUATERNIONBASE_PLUGIN
00179 #endif
00180 };
00181
00182
00183
00184
00185
00211 namespace internal {
00212 template<typename _Scalar,int _Options>
00213 struct traits<Quaternion<_Scalar,_Options> >
00214 {
00215 typedef Quaternion<_Scalar,_Options> PlainObject;
00216 typedef _Scalar Scalar;
00217 typedef Matrix<_Scalar,4,1,_Options> Coefficients;
00218 enum{
00219 IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
00220 Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
00221 };
00222 };
00223 }
00224
00225 template<typename _Scalar, int _Options>
00226 class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
00227 {
00228 typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
00229 enum { IsAligned = internal::traits<Quaternion>::IsAligned };
00230
00231 public:
00232 typedef _Scalar Scalar;
00233
00234 EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
00235 using Base::operator*=;
00236
00237 typedef typename internal::traits<Quaternion>::Coefficients Coefficients;
00238 typedef typename Base::AngleAxisType AngleAxisType;
00239
00241 inline Quaternion() {}
00242
00250 inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
00251
00253 inline Quaternion(const Scalar* data) : m_coeffs(data) {}
00254
00256 template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
00257
00259 explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
00260
00265 template<typename Derived>
00266 explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
00267
00269 template<typename OtherScalar, int OtherOptions>
00270 explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
00271 { m_coeffs = other.coeffs().template cast<Scalar>(); }
00272
00273 template<typename Derived1, typename Derived2>
00274 static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
00275
00276 inline Coefficients& coeffs() { return m_coeffs;}
00277 inline const Coefficients& coeffs() const { return m_coeffs;}
00278
00279 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(IsAligned)
00280
00281 protected:
00282 Coefficients m_coeffs;
00283
00284 #ifndef EIGEN_PARSED_BY_DOXYGEN
00285 static EIGEN_STRONG_INLINE void _check_template_params()
00286 {
00287 EIGEN_STATIC_ASSERT( (_Options & DontAlign) == _Options,
00288 INVALID_MATRIX_TEMPLATE_PARAMETERS)
00289 }
00290 #endif
00291 };
00292
00295 typedef Quaternion<float> Quaternionf;
00298 typedef Quaternion<double> Quaterniond;
00299
00300
00301
00302
00303
00304 namespace internal {
00305 template<typename _Scalar, int _Options>
00306 struct traits<Map<Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
00307 {
00308 typedef Map<Matrix<_Scalar,4,1>, _Options> Coefficients;
00309 };
00310 }
00311
00312 namespace internal {
00313 template<typename _Scalar, int _Options>
00314 struct traits<Map<const Quaternion<_Scalar>, _Options> > : traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> >
00315 {
00316 typedef Map<const Matrix<_Scalar,4,1>, _Options> Coefficients;
00317 typedef traits<Quaternion<_Scalar, (int(_Options)&Aligned)==Aligned ? AutoAlign : DontAlign> > TraitsBase;
00318 enum {
00319 Flags = TraitsBase::Flags & ~LvalueBit
00320 };
00321 };
00322 }
00323
00335 template<typename _Scalar, int _Options>
00336 class Map<const Quaternion<_Scalar>, _Options >
00337 : public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
00338 {
00339 typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
00340
00341 public:
00342 typedef _Scalar Scalar;
00343 typedef typename internal::traits<Map>::Coefficients Coefficients;
00344 EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
00345 using Base::operator*=;
00346
00353 EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
00354
00355 inline const Coefficients& coeffs() const { return m_coeffs;}
00356
00357 protected:
00358 const Coefficients m_coeffs;
00359 };
00360
00372 template<typename _Scalar, int _Options>
00373 class Map<Quaternion<_Scalar>, _Options >
00374 : public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
00375 {
00376 typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
00377
00378 public:
00379 typedef _Scalar Scalar;
00380 typedef typename internal::traits<Map>::Coefficients Coefficients;
00381 EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
00382 using Base::operator*=;
00383
00390 EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
00391
00392 inline Coefficients& coeffs() { return m_coeffs; }
00393 inline const Coefficients& coeffs() const { return m_coeffs; }
00394
00395 protected:
00396 Coefficients m_coeffs;
00397 };
00398
00401 typedef Map<Quaternion<float>, 0> QuaternionMapf;
00404 typedef Map<Quaternion<double>, 0> QuaternionMapd;
00407 typedef Map<Quaternion<float>, Aligned> QuaternionMapAlignedf;
00410 typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
00411
00412
00413
00414
00415
00416
00417
00418 namespace internal {
00419 template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
00420 {
00421 static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
00422 return Quaternion<Scalar>
00423 (
00424 a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
00425 a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(),
00426 a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(),
00427 a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x()
00428 );
00429 }
00430 };
00431 }
00432
00434 template <class Derived>
00435 template <class OtherDerived>
00436 EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
00437 QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
00438 {
00439 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
00440 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00441 return internal::quat_product<Architecture::Target, Derived, OtherDerived,
00442 typename internal::traits<Derived>::Scalar,
00443 internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
00444 }
00445
00447 template <class Derived>
00448 template <class OtherDerived>
00449 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
00450 {
00451 derived() = derived() * other.derived();
00452 return derived();
00453 }
00454
00462 template <class Derived>
00463 EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
00464 QuaternionBase<Derived>::_transformVector(const Vector3& v) const
00465 {
00466
00467
00468
00469
00470
00471 Vector3 uv = this->vec().cross(v);
00472 uv += uv;
00473 return v + this->w() * uv + this->vec().cross(uv);
00474 }
00475
00476 template<class Derived>
00477 EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
00478 {
00479 coeffs() = other.coeffs();
00480 return derived();
00481 }
00482
00483 template<class Derived>
00484 template<class OtherDerived>
00485 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
00486 {
00487 coeffs() = other.coeffs();
00488 return derived();
00489 }
00490
00493 template<class Derived>
00494 EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
00495 {
00496 using std::cos;
00497 using std::sin;
00498 Scalar ha = Scalar(0.5)*aa.angle();
00499 this->w() = cos(ha);
00500 this->vec() = sin(ha) * aa.axis();
00501 return derived();
00502 }
00503
00510 template<class Derived>
00511 template<class MatrixDerived>
00512 inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
00513 {
00514 EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
00515 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
00516 internal::quaternionbase_assign_impl<MatrixDerived>::run(*this, xpr.derived());
00517 return derived();
00518 }
00519
00523 template<class Derived>
00524 inline typename QuaternionBase<Derived>::Matrix3
00525 QuaternionBase<Derived>::toRotationMatrix(void) const
00526 {
00527
00528
00529
00530
00531 Matrix3 res;
00532
00533 const Scalar tx = Scalar(2)*this->x();
00534 const Scalar ty = Scalar(2)*this->y();
00535 const Scalar tz = Scalar(2)*this->z();
00536 const Scalar twx = tx*this->w();
00537 const Scalar twy = ty*this->w();
00538 const Scalar twz = tz*this->w();
00539 const Scalar txx = tx*this->x();
00540 const Scalar txy = ty*this->x();
00541 const Scalar txz = tz*this->x();
00542 const Scalar tyy = ty*this->y();
00543 const Scalar tyz = tz*this->y();
00544 const Scalar tzz = tz*this->z();
00545
00546 res.coeffRef(0,0) = Scalar(1)-(tyy+tzz);
00547 res.coeffRef(0,1) = txy-twz;
00548 res.coeffRef(0,2) = txz+twy;
00549 res.coeffRef(1,0) = txy+twz;
00550 res.coeffRef(1,1) = Scalar(1)-(txx+tzz);
00551 res.coeffRef(1,2) = tyz-twx;
00552 res.coeffRef(2,0) = txz-twy;
00553 res.coeffRef(2,1) = tyz+twx;
00554 res.coeffRef(2,2) = Scalar(1)-(txx+tyy);
00555
00556 return res;
00557 }
00558
00569 template<class Derived>
00570 template<typename Derived1, typename Derived2>
00571 inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
00572 {
00573 using std::max;
00574 using std::sqrt;
00575 Vector3 v0 = a.normalized();
00576 Vector3 v1 = b.normalized();
00577 Scalar c = v1.dot(v0);
00578
00579
00580
00581
00582
00583
00584
00585
00586
00587 if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
00588 {
00589 c = (max)(c,Scalar(-1));
00590 Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
00591 JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
00592 Vector3 axis = svd.matrixV().col(2);
00593
00594 Scalar w2 = (Scalar(1)+c)*Scalar(0.5);
00595 this->w() = sqrt(w2);
00596 this->vec() = axis * sqrt(Scalar(1) - w2);
00597 return derived();
00598 }
00599 Vector3 axis = v0.cross(v1);
00600 Scalar s = sqrt((Scalar(1)+c)*Scalar(2));
00601 Scalar invs = Scalar(1)/s;
00602 this->vec() = axis * invs;
00603 this->w() = s * Scalar(0.5);
00604
00605 return derived();
00606 }
00607
00608
00619 template<typename Scalar, int Options>
00620 template<typename Derived1, typename Derived2>
00621 Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
00622 {
00623 Quaternion quat;
00624 quat.setFromTwoVectors(a, b);
00625 return quat;
00626 }
00627
00628
00635 template <class Derived>
00636 inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
00637 {
00638
00639 Scalar n2 = this->squaredNorm();
00640 if (n2 > Scalar(0))
00641 return Quaternion<Scalar>(conjugate().coeffs() / n2);
00642 else
00643 {
00644
00645 return Quaternion<Scalar>(Coefficients::Zero());
00646 }
00647 }
00648
00655 template <class Derived>
00656 inline Quaternion<typename internal::traits<Derived>::Scalar>
00657 QuaternionBase<Derived>::conjugate() const
00658 {
00659 return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
00660 }
00661
00665 template <class Derived>
00666 template <class OtherDerived>
00667 inline typename internal::traits<Derived>::Scalar
00668 QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
00669 {
00670 using std::atan2;
00671 using std::abs;
00672 Quaternion<Scalar> d = (*this) * other.conjugate();
00673 return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
00674 }
00675
00676
00677
00684 template <class Derived>
00685 template <class OtherDerived>
00686 Quaternion<typename internal::traits<Derived>::Scalar>
00687 QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
00688 {
00689 using std::acos;
00690 using std::sin;
00691 using std::abs;
00692 static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
00693 Scalar d = this->dot(other);
00694 Scalar absD = abs(d);
00695
00696 Scalar scale0;
00697 Scalar scale1;
00698
00699 if(absD>=one)
00700 {
00701 scale0 = Scalar(1) - t;
00702 scale1 = t;
00703 }
00704 else
00705 {
00706
00707 Scalar theta = acos(absD);
00708 Scalar sinTheta = sin(theta);
00709
00710 scale0 = sin( ( Scalar(1) - t ) * theta) / sinTheta;
00711 scale1 = sin( ( t * theta) ) / sinTheta;
00712 }
00713 if(d<Scalar(0)) scale1 = -scale1;
00714
00715 return Quaternion<Scalar>(scale0 * coeffs() + scale1 * other.coeffs());
00716 }
00717
00718 namespace internal {
00719
00720
00721 template<typename Other>
00722 struct quaternionbase_assign_impl<Other,3,3>
00723 {
00724 typedef typename Other::Scalar Scalar;
00725 typedef DenseIndex Index;
00726 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
00727 {
00728 using std::sqrt;
00729
00730
00731 Scalar t = mat.trace();
00732 if (t > Scalar(0))
00733 {
00734 t = sqrt(t + Scalar(1.0));
00735 q.w() = Scalar(0.5)*t;
00736 t = Scalar(0.5)/t;
00737 q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t;
00738 q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t;
00739 q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t;
00740 }
00741 else
00742 {
00743 DenseIndex i = 0;
00744 if (mat.coeff(1,1) > mat.coeff(0,0))
00745 i = 1;
00746 if (mat.coeff(2,2) > mat.coeff(i,i))
00747 i = 2;
00748 DenseIndex j = (i+1)%3;
00749 DenseIndex k = (j+1)%3;
00750
00751 t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
00752 q.coeffs().coeffRef(i) = Scalar(0.5) * t;
00753 t = Scalar(0.5)/t;
00754 q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t;
00755 q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t;
00756 q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t;
00757 }
00758 }
00759 };
00760
00761
00762 template<typename Other>
00763 struct quaternionbase_assign_impl<Other,4,1>
00764 {
00765 typedef typename Other::Scalar Scalar;
00766 template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
00767 {
00768 q.coeffs() = vec;
00769 }
00770 };
00771
00772 }
00773
00774 }
00775
00776 #endif // EIGEN_QUATERNION_H