GeneralMatrixMatrix.h
Go to the documentation of this file.
00001 // This file is part of Eigen, a lightweight C++ template library
00002 // for linear algebra.
00003 //
00004 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
00005 //
00006 // This Source Code Form is subject to the terms of the Mozilla
00007 // Public License v. 2.0. If a copy of the MPL was not distributed
00008 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
00009 
00010 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_H
00011 #define EIGEN_GENERAL_MATRIX_MATRIX_H
00012 
00013 namespace Eigen { 
00014 
00015 namespace internal {
00016 
00017 template<typename _LhsScalar, typename _RhsScalar> class level3_blocking;
00018 
00019 /* Specialization for a row-major destination matrix => simple transposition of the product */
00020 template<
00021   typename Index,
00022   typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
00023   typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
00024 struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor>
00025 {
00026   typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
00027   static EIGEN_STRONG_INLINE void run(
00028     Index rows, Index cols, Index depth,
00029     const LhsScalar* lhs, Index lhsStride,
00030     const RhsScalar* rhs, Index rhsStride,
00031     ResScalar* res, Index resStride,
00032     ResScalar alpha,
00033     level3_blocking<RhsScalar,LhsScalar>& blocking,
00034     GemmParallelInfo<Index>* info = 0)
00035   {
00036     // transpose the product such that the result is column major
00037     general_matrix_matrix_product<Index,
00038       RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs,
00039       LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs,
00040       ColMajor>
00041     ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info);
00042   }
00043 };
00044 
00045 /*  Specialization for a col-major destination matrix
00046  *    => Blocking algorithm following Goto's paper */
00047 template<
00048   typename Index,
00049   typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs,
00050   typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs>
00051 struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor>
00052 {
00053 
00054 typedef typename scalar_product_traits<LhsScalar, RhsScalar>::ReturnType ResScalar;
00055 static void run(Index rows, Index cols, Index depth,
00056   const LhsScalar* _lhs, Index lhsStride,
00057   const RhsScalar* _rhs, Index rhsStride,
00058   ResScalar* res, Index resStride,
00059   ResScalar alpha,
00060   level3_blocking<LhsScalar,RhsScalar>& blocking,
00061   GemmParallelInfo<Index>* info = 0)
00062 {
00063   const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> lhs(_lhs,lhsStride);
00064   const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> rhs(_rhs,rhsStride);
00065 
00066   typedef gebp_traits<LhsScalar,RhsScalar> Traits;
00067 
00068   Index kc = blocking.kc();                   // cache block size along the K direction
00069   Index mc = (std::min)(rows,blocking.mc());  // cache block size along the M direction
00070   //Index nc = blocking.nc(); // cache block size along the N direction
00071 
00072   gemm_pack_lhs<LhsScalar, Index, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs;
00073   gemm_pack_rhs<RhsScalar, Index, Traits::nr, RhsStorageOrder> pack_rhs;
00074   gebp_kernel<LhsScalar, RhsScalar, Index, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp;
00075 
00076 #ifdef EIGEN_HAS_OPENMP
00077   if(info)
00078   {
00079     // this is the parallel version!
00080     Index tid = omp_get_thread_num();
00081     Index threads = omp_get_num_threads();
00082     
00083     std::size_t sizeA = kc*mc;
00084     std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00085     ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, 0);
00086     ei_declare_aligned_stack_constructed_variable(RhsScalar, w, sizeW, 0);
00087     
00088     RhsScalar* blockB = blocking.blockB();
00089     eigen_internal_assert(blockB!=0);
00090 
00091     // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs...
00092     for(Index k=0; k<depth; k+=kc)
00093     {
00094       const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A'
00095 
00096       // In order to reduce the chance that a thread has to wait for the other,
00097       // let's start by packing A'.
00098       pack_lhs(blockA, &lhs(0,k), lhsStride, actual_kc, mc);
00099 
00100       // Pack B_k to B' in a parallel fashion:
00101       // each thread packs the sub block B_k,j to B'_j where j is the thread id.
00102 
00103       // However, before copying to B'_j, we have to make sure that no other thread is still using it,
00104       // i.e., we test that info[tid].users equals 0.
00105       // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it.
00106       while(info[tid].users!=0) {}
00107       info[tid].users += threads;
00108 
00109       pack_rhs(blockB+info[tid].rhs_start*actual_kc, &rhs(k,info[tid].rhs_start), rhsStride, actual_kc, info[tid].rhs_length);
00110 
00111       // Notify the other threads that the part B'_j is ready to go.
00112       info[tid].sync = k;
00113 
00114       // Computes C_i += A' * B' per B'_j
00115       for(Index shift=0; shift<threads; ++shift)
00116       {
00117         Index j = (tid+shift)%threads;
00118 
00119         // At this point we have to make sure that B'_j has been updated by the thread j,
00120         // we use testAndSetOrdered to mimic a volatile access.
00121         // However, no need to wait for the B' part which has been updated by the current thread!
00122         if(shift>0)
00123           while(info[j].sync!=k) {}
00124 
00125         gebp(res+info[j].rhs_start*resStride, resStride, blockA, blockB+info[j].rhs_start*actual_kc, mc, actual_kc, info[j].rhs_length, alpha, -1,-1,0,0, w);
00126       }
00127 
00128       // Then keep going as usual with the remaining A'
00129       for(Index i=mc; i<rows; i+=mc)
00130       {
00131         const Index actual_mc = (std::min)(i+mc,rows)-i;
00132 
00133         // pack A_i,k to A'
00134         pack_lhs(blockA, &lhs(i,k), lhsStride, actual_kc, actual_mc);
00135 
00136         // C_i += A' * B'
00137         gebp(res+i, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1,-1,0,0, w);
00138       }
00139 
00140       // Release all the sub blocks B'_j of B' for the current thread,
00141       // i.e., we simply decrement the number of users by 1
00142       for(Index j=0; j<threads; ++j)
00143         #pragma omp atomic
00144         --(info[j].users);
00145     }
00146   }
00147   else
00148 #endif // EIGEN_HAS_OPENMP
00149   {
00150     EIGEN_UNUSED_VARIABLE(info);
00151 
00152     // this is the sequential version!
00153     std::size_t sizeA = kc*mc;
00154     std::size_t sizeB = kc*cols;
00155     std::size_t sizeW = kc*Traits::WorkSpaceFactor;
00156 
00157     ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA());
00158     ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB());
00159     ei_declare_aligned_stack_constructed_variable(RhsScalar, blockW, sizeW, blocking.blockW());
00160 
00161     // For each horizontal panel of the rhs, and corresponding panel of the lhs...
00162     // (==GEMM_VAR1)
00163     for(Index k2=0; k2<depth; k2+=kc)
00164     {
00165       const Index actual_kc = (std::min)(k2+kc,depth)-k2;
00166 
00167       // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs.
00168       // => Pack rhs's panel into a sequential chunk of memory (L2 caching)
00169       // Note that this panel will be read as many times as the number of blocks in the lhs's
00170       // vertical panel which is, in practice, a very low number.
00171       pack_rhs(blockB, &rhs(k2,0), rhsStride, actual_kc, cols);
00172 
00173       // For each mc x kc block of the lhs's vertical panel...
00174       // (==GEPP_VAR1)
00175       for(Index i2=0; i2<rows; i2+=mc)
00176       {
00177         const Index actual_mc = (std::min)(i2+mc,rows)-i2;
00178 
00179         // We pack the lhs's block into a sequential chunk of memory (L1 caching)
00180         // Note that this block will be read a very high number of times, which is equal to the number of
00181         // micro vertical panel of the large rhs's panel (e.g., cols/4 times).
00182         pack_lhs(blockA, &lhs(i2,k2), lhsStride, actual_kc, actual_mc);
00183 
00184         // Everything is packed, we can now call the block * panel kernel:
00185         gebp(res+i2, resStride, blockA, blockB, actual_mc, actual_kc, cols, alpha, -1, -1, 0, 0, blockW);
00186       }
00187     }
00188   }
00189 }
00190 
00191 };
00192 
00193 /*********************************************************************************
00194 *  Specialization of GeneralProduct<> for "large" GEMM, i.e.,
00195 *  implementation of the high level wrapper to general_matrix_matrix_product
00196 **********************************************************************************/
00197 
00198 template<typename Lhs, typename Rhs>
00199 struct traits<GeneralProduct<Lhs,Rhs,GemmProduct> >
00200  : traits<ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs> >
00201 {};
00202 
00203 template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType>
00204 struct gemm_functor
00205 {
00206   gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha,
00207                   BlockingType& blocking)
00208     : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking)
00209   {}
00210 
00211   void initParallelSession() const
00212   {
00213     m_blocking.allocateB();
00214   }
00215 
00216   void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const
00217   {
00218     if(cols==-1)
00219       cols = m_rhs.cols();
00220 
00221     Gemm::run(rows, cols, m_lhs.cols(),
00222               /*(const Scalar*)*/&m_lhs.coeffRef(row,0), m_lhs.outerStride(),
00223               /*(const Scalar*)*/&m_rhs.coeffRef(0,col), m_rhs.outerStride(),
00224               (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(),
00225               m_actualAlpha, m_blocking, info);
00226   }
00227 
00228   protected:
00229     const Lhs& m_lhs;
00230     const Rhs& m_rhs;
00231     Dest& m_dest;
00232     Scalar m_actualAlpha;
00233     BlockingType& m_blocking;
00234 };
00235 
00236 template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1,
00237 bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space;
00238 
00239 template<typename _LhsScalar, typename _RhsScalar>
00240 class level3_blocking
00241 {
00242     typedef _LhsScalar LhsScalar;
00243     typedef _RhsScalar RhsScalar;
00244 
00245   protected:
00246     LhsScalar* m_blockA;
00247     RhsScalar* m_blockB;
00248     RhsScalar* m_blockW;
00249 
00250     DenseIndex m_mc;
00251     DenseIndex m_nc;
00252     DenseIndex m_kc;
00253 
00254   public:
00255 
00256     level3_blocking()
00257       : m_blockA(0), m_blockB(0), m_blockW(0), m_mc(0), m_nc(0), m_kc(0)
00258     {}
00259 
00260     inline DenseIndex mc() const { return m_mc; }
00261     inline DenseIndex nc() const { return m_nc; }
00262     inline DenseIndex kc() const { return m_kc; }
00263 
00264     inline LhsScalar* blockA() { return m_blockA; }
00265     inline RhsScalar* blockB() { return m_blockB; }
00266     inline RhsScalar* blockW() { return m_blockW; }
00267 };
00268 
00269 template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
00270 class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true>
00271   : public level3_blocking<
00272       typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
00273       typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
00274 {
00275     enum {
00276       Transpose = StorageOrder==RowMajor,
00277       ActualRows = Transpose ? MaxCols : MaxRows,
00278       ActualCols = Transpose ? MaxRows : MaxCols
00279     };
00280     typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
00281     typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
00282     typedef gebp_traits<LhsScalar,RhsScalar> Traits;
00283     enum {
00284       SizeA = ActualRows * MaxDepth,
00285       SizeB = ActualCols * MaxDepth,
00286       SizeW = MaxDepth * Traits::WorkSpaceFactor
00287     };
00288 
00289     EIGEN_ALIGN16 LhsScalar m_staticA[SizeA];
00290     EIGEN_ALIGN16 RhsScalar m_staticB[SizeB];
00291     EIGEN_ALIGN16 RhsScalar m_staticW[SizeW];
00292 
00293   public:
00294 
00295     gemm_blocking_space(DenseIndex /*rows*/, DenseIndex /*cols*/, DenseIndex /*depth*/)
00296     {
00297       this->m_mc = ActualRows;
00298       this->m_nc = ActualCols;
00299       this->m_kc = MaxDepth;
00300       this->m_blockA = m_staticA;
00301       this->m_blockB = m_staticB;
00302       this->m_blockW = m_staticW;
00303     }
00304 
00305     inline void allocateA() {}
00306     inline void allocateB() {}
00307     inline void allocateW() {}
00308     inline void allocateAll() {}
00309 };
00310 
00311 template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor>
00312 class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false>
00313   : public level3_blocking<
00314       typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type,
00315       typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type>
00316 {
00317     enum {
00318       Transpose = StorageOrder==RowMajor
00319     };
00320     typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar;
00321     typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar;
00322     typedef gebp_traits<LhsScalar,RhsScalar> Traits;
00323 
00324     DenseIndex m_sizeA;
00325     DenseIndex m_sizeB;
00326     DenseIndex m_sizeW;
00327 
00328   public:
00329 
00330     gemm_blocking_space(DenseIndex rows, DenseIndex cols, DenseIndex depth)
00331     {
00332       this->m_mc = Transpose ? cols : rows;
00333       this->m_nc = Transpose ? rows : cols;
00334       this->m_kc = depth;
00335 
00336       computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc);
00337       m_sizeA = this->m_mc * this->m_kc;
00338       m_sizeB = this->m_kc * this->m_nc;
00339       m_sizeW = this->m_kc*Traits::WorkSpaceFactor;
00340     }
00341 
00342     void allocateA()
00343     {
00344       if(this->m_blockA==0)
00345         this->m_blockA = aligned_new<LhsScalar>(m_sizeA);
00346     }
00347 
00348     void allocateB()
00349     {
00350       if(this->m_blockB==0)
00351         this->m_blockB = aligned_new<RhsScalar>(m_sizeB);
00352     }
00353 
00354     void allocateW()
00355     {
00356       if(this->m_blockW==0)
00357         this->m_blockW = aligned_new<RhsScalar>(m_sizeW);
00358     }
00359 
00360     void allocateAll()
00361     {
00362       allocateA();
00363       allocateB();
00364       allocateW();
00365     }
00366 
00367     ~gemm_blocking_space()
00368     {
00369       aligned_delete(this->m_blockA, m_sizeA);
00370       aligned_delete(this->m_blockB, m_sizeB);
00371       aligned_delete(this->m_blockW, m_sizeW);
00372     }
00373 };
00374 
00375 } // end namespace internal
00376 
00377 template<typename Lhs, typename Rhs>
00378 class GeneralProduct<Lhs, Rhs, GemmProduct>
00379   : public ProductBase<GeneralProduct<Lhs,Rhs,GemmProduct>, Lhs, Rhs>
00380 {
00381     enum {
00382       MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime)
00383     };
00384   public:
00385     EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
00386     
00387     typedef typename  Lhs::Scalar LhsScalar;
00388     typedef typename  Rhs::Scalar RhsScalar;
00389     typedef           Scalar      ResScalar;
00390 
00391     GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
00392     {
00393       typedef internal::scalar_product_op<LhsScalar,RhsScalar> BinOp;
00394       EIGEN_CHECK_BINARY_COMPATIBILIY(BinOp,LhsScalar,RhsScalar);
00395     }
00396 
00397     template<typename Dest> void scaleAndAddTo(Dest& dst, const Scalar& alpha) const
00398     {
00399       eigen_assert(dst.rows()==m_lhs.rows() && dst.cols()==m_rhs.cols());
00400 
00401       typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(m_lhs);
00402       typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(m_rhs);
00403 
00404       Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(m_lhs)
00405                                  * RhsBlasTraits::extractScalarFactor(m_rhs);
00406 
00407       typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar,
00408               Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType;
00409 
00410       typedef internal::gemm_functor<
00411         Scalar, Index,
00412         internal::general_matrix_matrix_product<
00413           Index,
00414           LhsScalar, (_ActualLhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate),
00415           RhsScalar, (_ActualRhsType::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate),
00416           (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>,
00417         _ActualLhsType, _ActualRhsType, Dest, BlockingType> GemmFunctor;
00418 
00419       BlockingType blocking(dst.rows(), dst.cols(), lhs.cols());
00420 
00421       internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)>(GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), this->rows(), this->cols(), Dest::Flags&RowMajorBit);
00422     }
00423 };
00424 
00425 } // end namespace Eigen
00426 
00427 #endif // EIGEN_GENERAL_MATRIX_MATRIX_H


turtlebot_exploration_3d
Author(s): Bona , Shawn
autogenerated on Thu Jun 6 2019 20:58:16