Static Optimization Problem with Two Objectives

This tutorial explains how to set up multi-objective optimization problems in ACADO and discusses several algorithmic settings. As an introductory example a static optimization problems with two objectives is considered.

Mathematical formulation

For the static bi-objective problem only two scalar variables are involved: y1 and y2 . The aim is to simultaneously minimize these two variables. However, both are bounded and have to satisfy a nonlinear constraint.

\begin{eqnarray*} \displaystyle\min_{y_1, y_2} & \{ y_1, y_2 \} \\ \textrm{s.t.} & 0 \leq y_1 \leq 5.0 \\ & 0 \leq y_2 \leq 5.2 \\ & y_2 \geq 5 \exp( -y_1 ) + 2 \exp( -0.5 (y_1 - 3)^2 ) \end{eqnarray*}

An ACADO tutorial code

The following piece of code illustrates how to set up the bi-objective optimization problem mentioned above. The Pareto set is first generated with 41 points based on NBI, and filtered afterwards using the Pareto filter algorithm. Both original and the filtered Pareto set are plotted and exported. This code is available in the examples/multi_objective directory as scalar2_nbi.cpp. The WS and NNC version are called scalar2_ws.cpp and scalar2_nnc.cpp, respectively.

#include <acado_optimal_control.hpp>
#include <include/acado_gnuplot/gnuplot_window.hpp>
 
int main( )
{
    USING_NAMESPACE_ACADO


    // INTRODUCE THE VARIABLES:
    // -------------------------
    Parameter y1,y2;


    // DEFINE AN OPTIMIZATION PROBLEM:
    // -------------------------------
    NLP nlp;
    nlp.minimize( 0, y1 );
    nlp.minimize( 1, y2 );

    nlp.subjectTo( 0.0 <= y1 <= 5.0 );
    nlp.subjectTo( 0.0 <= y2 <= 5.2 );
    nlp.subjectTo( 0.0 <= y2 - 5.0*exp(-y1) - 2.0*exp(-0.5*(y1-3.0)*(y1-3.0)) );


    // DEFINE A MULTI-OBJECTIVE ALGORITHM AND SOLVE THE NLP:
    // -----------------------------------------------------
    MultiObjectiveAlgorithm algorithm(nlp);

    algorithm.set(PARETO_FRONT_GENERATION,PFG_NORMAL_BOUNDARY_INTERSECTION);
    algorithm.set(PARETO_FRONT_DISCRETIZATION,41);
    algorithm.set(KKT_TOLERANCE,1e-12);

    // Minimize individual objective function  
    algorithm.initializeParameters("scalar2_initial2.txt");
    algorithm.solveSingleObjective(1);

    // Minimize individual objective function
    algorithm.initializeParameters("scalar2_initial1.txt");
    algorithm.solveSingleObjective(0);

    // Generate Pareto set 
    algorithm.solve();


    // GET THE RESULT FOR THE PARETO FRONT AND PLOT IT:
    // ------------------------------------------------
    VariablesGrid paretoFront;
    algorithm.getParetoFront( paretoFront );

    GnuplotWindow window1;
                window1.addSubplot( paretoFront,"Pareto Front y1 vs y2", "y1","y2", PM_POINTS );
    window1.plot( );

    FILE *file = fopen("scalar2_nbi_pareto.txt","w");
    paretoFront.print();
    file << paretoFront;
    fclose(file);


    // FILTER THE PARETO FRONT AND PLOT IT:
    // ------------------------------------
    algorithm.getParetoFrontWithFilter( paretoFront );

    GnuplotWindow window2;
                window2.addSubplot( paretoFront,"Pareto Front (with filter) y1 vs y2", "y1","y2", PM_POINTS );
    window2.plot( );

    FILE *file2 = fopen("scalar2_nbi_pareto_filtered.txt","w");
    paretoFront.print();
    file2 << paretoFront;
    fclose(file2);


    // PRINT INFORMATION ABOUT THE ALGORITHM:
    // --------------------------------------
    algorithm.printInfo();

    return 0;
}

Typical settings for multi-objective optimization:

        algorithm.set(PARETO_FRONT_GENERATION,PFG_NORMAL_BOUNDARY_INTERSECTION);
        // algorithm.set(PARETO_FRONT_GENERATION,PFG_WEIGHTED_SUM);
        // algorithm.set(PARETO_FRONT_GENERATION,PFG_NORMALIZED_NORMAL_CONSTRAINT);

As both NBI and NNC require the individual minima, these points are first calculated, before the Pareto set is computed. In the current case, initial guesses are provided for both minimizations. However, for WS precomputing the individual minima is not required.

        // Minimize individual objective function  
        algorithm.initializeParameters("scalar2_initial2.txt");
        algorithm.solveSingleObjective(1);

        // Minimize individual objective function
        algorithm.initializeParameters("scalar2_initial1.txt");
        algorithm.solveSingleObjective(0);

        // Generate Pareto set 
        algorithm.solve();
        algorithm.set( PARETO_FRONT_DISCRETIZATION, 41 );
        algorithm.set( PARETO_FRONT_HOTSTART, BT_FALSE );
  VariablesGrid paretoFront;
  algorithm.getParetoFront( paretoFront );
  algorithm.getParetoFrontWithFilter( paretoFront );

Results

The corresponding Pareto plot as returned by NBI looks as follows in GNUplot.

example_009_1.png
Simulation results

After filtering, part of the candidate solutions are removed and the following Pareto set is obtained.

example_009_2.png
Simulation results

The resulting Pareto sets (without and with filtering) are stored in separate files. For this example these files (scalar2_nbi_pareto.txt and scalar2_nbi_pareto_filtered.txt) read as follows.

The unfiltered Pareto set:

5.0000000000000107e+00 3.0436030146863163e-01
4.8510324284838262e+00 3.9969162543346926e-01
4.7133911121598349e+00 5.0571008143342888e-01
4.5850420277928858e+00 6.2049642303553354e-01
4.4641451993538102e+00 7.4231450122746845e-01
4.3490799951888750e+00 8.6963513410666815e-01
4.2384174965955932e+00 1.0011100346548896e+00
4.1308712466129229e+00 1.1355253386984179e+00
4.0252392043490266e+00 1.2717468346638157e+00
3.9203388647649642e+00 1.4086587444524188e+00
3.8149302413018202e+00 1.5450910520393359e+00
3.7076137306823567e+00 1.6797231316072156e+00
3.5966766651281867e+00 1.8109389585857820e+00
3.4798329632877403e+00 1.9365814516773985e+00
3.3537245489554657e+00 2.0534820257509918e+00
3.2128264698077271e+00 2.1564274930433989e+00
3.0465661764272487e+00 2.2354418968369805e+00
2.8293166560869163e+00 2.2663443173102213e+00
2.4647256611665060e+00 2.1582195159553814e+00
1.8584089213758319e+00 1.8220091816613602e+00
1.5433274412816584e+00 1.7606001493726566e+00
1.3462850348245228e+00 1.8105694273777062e+00
1.1961741359932123e+00 1.9048219402290063e+00
1.0719280625931420e+00 2.0234797662008797e+00
9.6442408351665709e-01 2.1579349558683840e+00
8.6883450348561131e-01 2.3036322333713701e+00
7.8227023942536111e-01 2.4578455421487582e+00
7.0285147784670110e-01 2.6188011436947809e+00
6.2927821642303783e-01 2.7852723928143126e+00
5.6060853512112774e-01 2.9563705205726105e+00
4.9613430942411740e-01 3.1314273608299832e+00
4.3530697468540458e-01 3.3099253035989671e+00
3.7769088215086077e-01 3.4914532831144625e+00
3.2293275209686878e-01 3.6756779546841978e+00
2.7074096467747111e-01 3.8623241541215165e+00
2.2087110100100071e-01 4.0511612547168152e+00
1.7311558816070316e-01 4.2419933965831529e+00
1.2729611646424321e-01 4.4346523317698354e+00
8.3257976125861277e-02 4.6289920805263201e+00
4.0865752270796141e-02 4.8248848692309174e+00
7.6327832942979512e-17 5.0222179930764810e+00

The Pareto set after filtering:

5.0000000000000107e+00 3.0436030146863163e-01
4.8510324284838262e+00 3.9969162543346926e-01
4.7133911121598349e+00 5.0571008143342888e-01
4.5850420277928858e+00 6.2049642303553354e-01
4.4641451993538102e+00 7.4231450122746845e-01
4.3490799951888750e+00 8.6963513410666815e-01
4.2384174965955932e+00 1.0011100346548896e+00
4.1308712466129229e+00 1.1355253386984179e+00
4.0252392043490266e+00 1.2717468346638157e+00
3.9203388647649642e+00 1.4086587444524188e+00
3.8149302413018202e+00 1.5450910520393359e+00
3.7076137306823567e+00 1.6797231316072156e+00
1.5433274412816584e+00 1.7606001493726566e+00
1.3462850348245228e+00 1.8105694273777062e+00
1.1961741359932123e+00 1.9048219402290063e+00
1.0719280625931420e+00 2.0234797662008797e+00
9.6442408351665709e-01 2.1579349558683840e+00
8.6883450348561131e-01 2.3036322333713701e+00
7.8227023942536111e-01 2.4578455421487582e+00
7.0285147784670110e-01 2.6188011436947809e+00
6.2927821642303783e-01 2.7852723928143126e+00
5.6060853512112774e-01 2.9563705205726105e+00
4.9613430942411740e-01 3.1314273608299832e+00
4.3530697468540458e-01 3.3099253035989671e+00
3.7769088215086077e-01 3.4914532831144625e+00
3.2293275209686878e-01 3.6756779546841978e+00
2.7074096467747111e-01 3.8623241541215165e+00
2.2087110100100071e-01 4.0511612547168152e+00
1.7311558816070316e-01 4.2419933965831529e+00
1.2729611646424321e-01 4.4346523317698354e+00
8.3257976125861277e-02 4.6289920805263201e+00
4.0865752270796141e-02 4.8248848692309174e+00
7.6327832942979512e-17 5.0222179930764810e+00

As can be seen, the non-Pareto optimal points depicted in bold are removed by the Pareto filter.

Next example: Static Optimization Problem with Three Objectives



acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Sat Jun 8 2019 19:40:23