Public Types | Public Member Functions | Static Public Member Functions | Private Attributes
Eigen::Spline< _Scalar, _Dim, _Degree > Class Template Reference

A class representing multi-dimensional spline curves. More...

#include <Spline.h>

List of all members.

Public Types

enum  { Dimension = _Dim }
enum  { Degree = _Degree }
typedef SplineTraits< Spline >
::BasisVectorType 
BasisVectorType
 The data type used to store non-zero basis functions.
typedef SplineTraits< Spline >
::ControlPointVectorType 
ControlPointVectorType
 The data type representing the spline's control points.
typedef SplineTraits< Spline >
::KnotVectorType 
KnotVectorType
 The data type used to store knot vectors.
typedef SplineTraits< Spline >
::PointType 
PointType
 The point type the spline is representing.
typedef _Scalar Scalar

Public Member Functions

SplineTraits< Spline >
::BasisDerivativeType 
basisFunctionDerivatives (Scalar u, DenseIndex order) const
 Computes the non-zero spline basis function derivatives up to given order.
template<int DerivativeOrder>
SplineTraits< Spline,
DerivativeOrder >
::BasisDerivativeType 
basisFunctionDerivatives (Scalar u, DenseIndex order=DerivativeOrder) const
SplineTraits< Spline >
::BasisVectorType 
basisFunctions (Scalar u) const
 Computes the non-zero basis functions at the given site.
const ControlPointVectorTypectrls () const
 Returns the knots of the underlying spline.
DenseIndex degree () const
 Returns the spline degree.
SplineTraits< Spline >
::DerivativeType 
derivatives (Scalar u, DenseIndex order) const
 Evaluation of spline derivatives of up-to given order.
template<int DerivativeOrder>
SplineTraits< Spline,
DerivativeOrder >
::DerivativeType 
derivatives (Scalar u, DenseIndex order=DerivativeOrder) const
const KnotVectorTypeknots () const
 Returns the knots of the underlying spline.
PointType operator() (Scalar u) const
 Returns the spline value at a given site $u$.
DenseIndex span (Scalar u) const
 Returns the span within the knot vector in which u is falling.
template<typename OtherVectorType , typename OtherArrayType >
 Spline (const OtherVectorType &knots, const OtherArrayType &ctrls)
 Creates a spline from a knot vector and control points.
template<int OtherDegree>
 Spline (const Spline< Scalar, Dimension, OtherDegree > &spline)
 Copy constructor for splines.

Static Public Member Functions

static BasisVectorType BasisFunctions (Scalar u, DenseIndex degree, const KnotVectorType &knots)
 Returns the spline's non-zero basis functions.
static DenseIndex Span (typename SplineTraits< Spline >::Scalar u, DenseIndex degree, const typename SplineTraits< Spline >::KnotVectorType &knots)
 Computes the spang within the provided knot vector in which u is falling.

Private Attributes

ControlPointVectorType m_ctrls
KnotVectorType m_knots

Detailed Description

template<typename _Scalar, int _Dim, int _Degree>
class Eigen::Spline< _Scalar, _Dim, _Degree >

A class representing multi-dimensional spline curves.

The class represents B-splines with non-uniform knot vectors. Each control point of the B-spline is associated with a basis function

\begin{align*} C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i \end{align*}

Template Parameters:
_ScalarThe underlying data type (typically float or double)
_DimThe curve dimension (e.g. 2 or 3)
_DegreePer default set to Dynamic; could be set to the actual desired degree for optimization purposes (would result in stack allocation of several temporary variables).

Definition at line 35 of file Spline.h.


Member Typedef Documentation

template<typename _Scalar, int _Dim, int _Degree>
typedef SplineTraits<Spline>::BasisVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::BasisVectorType

The data type used to store non-zero basis functions.

Definition at line 49 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
typedef SplineTraits<Spline>::ControlPointVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::ControlPointVectorType

The data type representing the spline's control points.

Definition at line 52 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
typedef SplineTraits<Spline>::KnotVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::KnotVectorType

The data type used to store knot vectors.

Definition at line 46 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
typedef SplineTraits<Spline>::PointType Eigen::Spline< _Scalar, _Dim, _Degree >::PointType

The point type the spline is representing.

Definition at line 43 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
typedef _Scalar Eigen::Spline< _Scalar, _Dim, _Degree >::Scalar

The spline curve's scalar type.

Definition at line 38 of file Spline.h.


Member Enumeration Documentation

template<typename _Scalar, int _Dim, int _Degree>
anonymous enum
Enumerator:
Dimension 

The spline curve's dimension.

Definition at line 39 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
anonymous enum
Enumerator:
Degree 

The spline curve's degree.

Definition at line 40 of file Spline.h.


Constructor & Destructor Documentation

template<typename _Scalar, int _Dim, int _Degree>
template<typename OtherVectorType , typename OtherArrayType >
Eigen::Spline< _Scalar, _Dim, _Degree >::Spline ( const OtherVectorType &  knots,
const OtherArrayType &  ctrls 
) [inline]

Creates a spline from a knot vector and control points.

Parameters:
knotsThe spline's knot vector.
ctrlsThe spline's control point vector.

Definition at line 60 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
template<int OtherDegree>
Eigen::Spline< _Scalar, _Dim, _Degree >::Spline ( const Spline< Scalar, Dimension, OtherDegree > &  spline) [inline]

Copy constructor for splines.

Parameters:
splineThe input spline.

Definition at line 67 of file Spline.h.


Member Function Documentation

template<typename _Scalar , int _Dim, int _Degree>
SplineTraits< Spline< _Scalar, _Dim, _Degree >, DerivativeOrder >::BasisDerivativeType Eigen::Spline< _Scalar, _Dim, _Degree >::basisFunctionDerivatives ( Scalar  u,
DenseIndex  order 
) const

Computes the non-zero spline basis function derivatives up to given order.

The function computes

\begin{align*} \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u) \end{align*}

with i ranging from 0 up to the specified order.

Parameters:
uParameter $u \in [0;1]$ at which the non-zero basis function derivatives are computed.
orderThe order up to which the basis function derivatives are computes.

Definition at line 446 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
template<int DerivativeOrder>
SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType Eigen::Spline< _Scalar, _Dim, _Degree >::basisFunctionDerivatives ( Scalar  u,
DenseIndex  order = DerivativeOrder 
) const

Computes the non-zero spline basis function derivatives up to given order.

The function computes

\begin{align*} \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u) \end{align*}

with i ranging from 0 up to the specified order.

Parameters:
uParameter $u \in [0;1]$ at which the non-zero basis function derivatives are computed.
orderThe order up to which the basis function derivatives are computes.
Using the template version of this function is more efficieent since temporary objects are allocated on the stack whenever this is possible.

template<typename _Scalar , int _Dim, int _Degree>
SplineTraits< Spline< _Scalar, _Dim, _Degree > >::BasisVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::basisFunctions ( Scalar  u) const

Computes the non-zero basis functions at the given site.

Splines have local support and a point from their image is defined by exactly $p+1$ control points $P_i$ where $p$ is the spline degree.

This function computes the $p+1$ non-zero basis function values for a given parameter value $u$. It returns

\begin{align*} N_{i,p}(u), \hdots, N_{i+p+1,p}(u) \end{align*}

Parameters:
uParameter $u \in [0;1]$ at which the non-zero basis functions are computed.

Definition at line 331 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
Spline< _Scalar, _Dim, _Degree >::BasisVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::BasisFunctions ( Scalar  u,
DenseIndex  degree,
const KnotVectorType knots 
) [static]

Returns the spline's non-zero basis functions.

The function computes and returns

\begin{align*} N_{i,p}(u), \hdots, N_{i+p+1,p}(u) \end{align*}

Parameters:
uThe site at which the basis functions are computed.
degreeThe degree of the underlying spline.
knotsThe underlying spline's knot vector.

Definition at line 211 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
const ControlPointVectorType& Eigen::Spline< _Scalar, _Dim, _Degree >::ctrls ( ) const [inline]

Returns the knots of the underlying spline.

Definition at line 78 of file Spline.h.

template<typename _Scalar , int _Dim, int _Degree>
DenseIndex Eigen::Spline< _Scalar, _Dim, _Degree >::degree ( ) const

Returns the spline degree.

Definition at line 246 of file Spline.h.

template<typename _Scalar , int _Dim, int _Degree>
SplineTraits< Spline< _Scalar, _Dim, _Degree >, DerivativeOrder >::DerivativeType Eigen::Spline< _Scalar, _Dim, _Degree >::derivatives ( Scalar  u,
DenseIndex  order 
) const

Evaluation of spline derivatives of up-to given order.

The function returns

\begin{align*} \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i \end{align*}

for i ranging between 0 and order.

Parameters:
uParameter $u \in [0;1]$ at which the spline derivative is evaluated.
orderThe order up to which the derivatives are computed.

Definition at line 312 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
template<int DerivativeOrder>
SplineTraits<Spline,DerivativeOrder>::DerivativeType Eigen::Spline< _Scalar, _Dim, _Degree >::derivatives ( Scalar  u,
DenseIndex  order = DerivativeOrder 
) const

Evaluation of spline derivatives of up-to given order.

The function returns

\begin{align*} \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i \end{align*}

for i ranging between 0 and order.

Parameters:
uParameter $u \in [0;1]$ at which the spline derivative is evaluated.
orderThe order up to which the derivatives are computed.
Using the template version of this function is more efficieent since temporary objects are allocated on the stack whenever this is possible.

template<typename _Scalar, int _Dim, int _Degree>
const KnotVectorType& Eigen::Spline< _Scalar, _Dim, _Degree >::knots ( ) const [inline]

Returns the knots of the underlying spline.

Definition at line 73 of file Spline.h.

template<typename _Scalar , int _Dim, int _Degree>
Spline< _Scalar, _Dim, _Degree >::PointType Eigen::Spline< _Scalar, _Dim, _Degree >::operator() ( Scalar  u) const

Returns the spline value at a given site $u$.

The function returns

\begin{align*} C(u) & = \sum_{i=0}^{n}N_{i,p}P_i \end{align*}

Parameters:
uParameter $u \in [0;1]$ at which the spline is evaluated.
Returns:
The spline value at the given location $u$.

Definition at line 261 of file Spline.h.

template<typename _Scalar , int _Dim, int _Degree>
DenseIndex Eigen::Spline< _Scalar, _Dim, _Degree >::span ( Scalar  u) const

Returns the span within the knot vector in which u is falling.

Parameters:
uThe site for which the span is determined.

Definition at line 255 of file Spline.h.

template<typename _Scalar , int _Dim, int _Degree>
DenseIndex Eigen::Spline< _Scalar, _Dim, _Degree >::Span ( typename SplineTraits< Spline< _Scalar, _Dim, _Degree > >::Scalar  u,
DenseIndex  degree,
const typename SplineTraits< Spline< _Scalar, _Dim, _Degree > >::KnotVectorType knots 
) [static]

Computes the spang within the provided knot vector in which u is falling.

Definition at line 198 of file Spline.h.


Member Data Documentation

template<typename _Scalar, int _Dim, int _Degree>
ControlPointVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::m_ctrls [private]

Control points.

Definition at line 194 of file Spline.h.

template<typename _Scalar, int _Dim, int _Degree>
KnotVectorType Eigen::Spline< _Scalar, _Dim, _Degree >::m_knots [private]

Knot vector.

Definition at line 193 of file Spline.h.


The documentation for this class was generated from the following file:


win_eigen
Author(s): Daniel Stonier
autogenerated on Wed Sep 16 2015 07:12:58