principal_curvatures.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *  Copyright (c) 2012-, Open Perception, Inc.
00007  *
00008  *  All rights reserved.
00009  *
00010  *  Redistribution and use in source and binary forms, with or without
00011  *  modification, are permitted provided that the following conditions
00012  *  are met:
00013  *
00014  *   * Redistributions of source code must retain the above copyright
00015  *     notice, this list of conditions and the following disclaimer.
00016  *   * Redistributions in binary form must reproduce the above
00017  *     copyright notice, this list of conditions and the following
00018  *     disclaimer in the documentation and/or other materials provided
00019  *     with the distribution.
00020  *   * Neither the name of the copyright holder(s) nor the names of its
00021  *     contributors may be used to endorse or promote products derived
00022  *     from this software without specific prior written permission.
00023  *
00024  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00026  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00027  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00028  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00029  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00030  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00031  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00032  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00033  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00034  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00035  *  POSSIBILITY OF SUCH DAMAGE.
00036  *
00037  * $Id$
00038  *
00039  */
00040 
00041 #ifndef PCL_FEATURES_IMPL_PRINCIPAL_CURVATURES_H_
00042 #define PCL_FEATURES_IMPL_PRINCIPAL_CURVATURES_H_
00043 
00044 #include <pcl/features/principal_curvatures.h>
00045 
00047 template <typename PointInT, typename PointNT, typename PointOutT> void
00048 pcl::PrincipalCurvaturesEstimation<PointInT, PointNT, PointOutT>::computePointPrincipalCurvatures (
00049       const pcl::PointCloud<PointNT> &normals, int p_idx, const std::vector<int> &indices,
00050       float &pcx, float &pcy, float &pcz, float &pc1, float &pc2)
00051 {
00052   EIGEN_ALIGN16 Eigen::Matrix3f I = Eigen::Matrix3f::Identity ();
00053   Eigen::Vector3f n_idx (normals.points[p_idx].normal[0], normals.points[p_idx].normal[1], normals.points[p_idx].normal[2]);
00054   EIGEN_ALIGN16 Eigen::Matrix3f M = I - n_idx * n_idx.transpose ();    // projection matrix (into tangent plane)
00055 
00056   // Project normals into the tangent plane
00057   Eigen::Vector3f normal;
00058   projected_normals_.resize (indices.size ());
00059   xyz_centroid_.setZero ();
00060   for (size_t idx = 0; idx < indices.size(); ++idx)
00061   {
00062     normal[0] = normals.points[indices[idx]].normal[0];
00063     normal[1] = normals.points[indices[idx]].normal[1];
00064     normal[2] = normals.points[indices[idx]].normal[2];
00065 
00066     projected_normals_[idx] = M * normal;
00067     xyz_centroid_ += projected_normals_[idx];
00068   }
00069 
00070   // Estimate the XYZ centroid
00071   xyz_centroid_ /= static_cast<float> (indices.size ());
00072 
00073   // Initialize to 0
00074   covariance_matrix_.setZero ();
00075 
00076   double demean_xy, demean_xz, demean_yz;
00077   // For each point in the cloud
00078   for (size_t idx = 0; idx < indices.size (); ++idx)
00079   {
00080     demean_ = projected_normals_[idx] - xyz_centroid_;
00081 
00082     demean_xy = demean_[0] * demean_[1];
00083     demean_xz = demean_[0] * demean_[2];
00084     demean_yz = demean_[1] * demean_[2];
00085 
00086     covariance_matrix_(0, 0) += demean_[0] * demean_[0];
00087     covariance_matrix_(0, 1) += static_cast<float> (demean_xy);
00088     covariance_matrix_(0, 2) += static_cast<float> (demean_xz);
00089 
00090     covariance_matrix_(1, 0) += static_cast<float> (demean_xy);
00091     covariance_matrix_(1, 1) += demean_[1] * demean_[1];
00092     covariance_matrix_(1, 2) += static_cast<float> (demean_yz);
00093 
00094     covariance_matrix_(2, 0) += static_cast<float> (demean_xz);
00095     covariance_matrix_(2, 1) += static_cast<float> (demean_yz);
00096     covariance_matrix_(2, 2) += demean_[2] * demean_[2];
00097   }
00098 
00099   // Extract the eigenvalues and eigenvectors
00100   pcl::eigen33 (covariance_matrix_, eigenvalues_);
00101   pcl::computeCorrespondingEigenVector (covariance_matrix_, eigenvalues_ [2], eigenvector_);
00102 
00103   pcx = eigenvector_ [0];
00104   pcy = eigenvector_ [1];
00105   pcz = eigenvector_ [2];
00106   float indices_size = 1.0f / static_cast<float> (indices.size ());
00107   pc1 = eigenvalues_ [2] * indices_size;
00108   pc2 = eigenvalues_ [1] * indices_size;
00109 }
00110 
00111 
00113 template <typename PointInT, typename PointNT, typename PointOutT> void
00114 pcl::PrincipalCurvaturesEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
00115 {
00116   // Allocate enough space to hold the results
00117   // \note This resize is irrelevant for a radiusSearch ().
00118   std::vector<int> nn_indices (k_);
00119   std::vector<float> nn_dists (k_);
00120 
00121   output.is_dense = true;
00122   // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
00123   if (input_->is_dense)
00124   {
00125     // Iterating over the entire index vector
00126     for (size_t idx = 0; idx < indices_->size (); ++idx)
00127     {
00128       if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00129       {
00130         output.points[idx].principal_curvature[0] = output.points[idx].principal_curvature[1] = output.points[idx].principal_curvature[2] =
00131           output.points[idx].pc1 = output.points[idx].pc2 = std::numeric_limits<float>::quiet_NaN ();
00132         output.is_dense = false;
00133         continue;
00134       }
00135 
00136       // Estimate the principal curvatures at each patch
00137       computePointPrincipalCurvatures (*normals_, (*indices_)[idx], nn_indices,
00138                                        output.points[idx].principal_curvature[0], output.points[idx].principal_curvature[1], output.points[idx].principal_curvature[2],
00139                                        output.points[idx].pc1, output.points[idx].pc2);
00140     }
00141   }
00142   else
00143   {
00144     // Iterating over the entire index vector
00145     for (size_t idx = 0; idx < indices_->size (); ++idx)
00146     {
00147       if (!isFinite ((*input_)[(*indices_)[idx]]) ||
00148           this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00149       {
00150         output.points[idx].principal_curvature[0] = output.points[idx].principal_curvature[1] = output.points[idx].principal_curvature[2] =
00151           output.points[idx].pc1 = output.points[idx].pc2 = std::numeric_limits<float>::quiet_NaN ();
00152         output.is_dense = false;
00153         continue;
00154       }
00155 
00156       // Estimate the principal curvatures at each patch
00157       computePointPrincipalCurvatures (*normals_, (*indices_)[idx], nn_indices,
00158                                        output.points[idx].principal_curvature[0], output.points[idx].principal_curvature[1], output.points[idx].principal_curvature[2],
00159                                        output.points[idx].pc1, output.points[idx].pc2);
00160     }
00161   }
00162 }
00163 
00164 #define PCL_INSTANTIATE_PrincipalCurvaturesEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PrincipalCurvaturesEstimation<T,NT,OutT>;
00165 
00166 #endif    // PCL_FEATURES_IMPL_PRINCIPAL_CURVATURES_H_


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:31:18