normal_3d_omp.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *  Copyright (c) 2012-, Open Perception, Inc.
00007  *
00008  *  All rights reserved.
00009  *
00010  *  Redistribution and use in source and binary forms, with or without
00011  *  modification, are permitted provided that the following conditions
00012  *  are met:
00013  *
00014  *   * Redistributions of source code must retain the above copyright
00015  *     notice, this list of conditions and the following disclaimer.
00016  *   * Redistributions in binary form must reproduce the above
00017  *     copyright notice, this list of conditions and the following
00018  *     disclaimer in the documentation and/or other materials provided
00019  *     with the distribution.
00020  *   * Neither the name of the copyright holder(s) nor the names of its
00021  *     contributors may be used to endorse or promote products derived
00022  *     from this software without specific prior written permission.
00023  *
00024  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00026  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00027  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00028  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00029  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00030  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00031  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00032  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00033  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00034  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00035  *  POSSIBILITY OF SUCH DAMAGE.
00036  *
00037  * $Id$
00038  *
00039  */
00040 
00041 #ifndef PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
00042 #define PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
00043 
00044 #include <pcl/features/normal_3d_omp.h>
00045 
00047 template <typename PointInT, typename PointOutT> void
00048 pcl::NormalEstimationOMP<PointInT, PointOutT>::computeFeature (PointCloudOut &output)
00049 {
00050   // Allocate enough space to hold the results
00051   // \note This resize is irrelevant for a radiusSearch ().
00052   std::vector<int> nn_indices (k_);
00053   std::vector<float> nn_dists (k_);
00054 
00055   output.is_dense = true;
00056 
00057   // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
00058   if (input_->is_dense)
00059   {
00060 #ifdef _OPENMP
00061 #pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
00062 #endif
00063     // Iterating over the entire index vector
00064     for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
00065     {
00066       if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00067       {
00068         output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
00069 
00070         output.is_dense = false;
00071         continue;
00072       }
00073 
00074       Eigen::Vector4f n;
00075       pcl::computePointNormal<PointInT> (*surface_, nn_indices,
00076                                          n,
00077                                          output.points[idx].curvature);
00078                           
00079       output.points[idx].normal_x = n[0];
00080       output.points[idx].normal_y = n[1];
00081       output.points[idx].normal_z = n[2];
00082   
00083       flipNormalTowardsViewpoint (input_->points[(*indices_)[idx]], vpx_, vpy_, vpz_,
00084                                   output.points[idx].normal[0], 
00085                                   output.points[idx].normal[1], 
00086                                   output.points[idx].normal[2]);
00087     }
00088   }
00089   else
00090   {
00091 #ifdef _OPENMP
00092 #pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
00093 #endif
00094      // Iterating over the entire index vector
00095     for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
00096     {
00097       if (!isFinite ((*input_)[(*indices_)[idx]]) ||
00098           this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00099       {
00100         output.points[idx].normal[0] = output.points[idx].normal[1] = output.points[idx].normal[2] = output.points[idx].curvature = std::numeric_limits<float>::quiet_NaN ();
00101 
00102         output.is_dense = false;
00103         continue;
00104       }
00105 
00106       Eigen::Vector4f n;
00107       pcl::computePointNormal<PointInT> (*surface_, nn_indices,
00108                                          n,
00109                                          output.points[idx].curvature);
00110                           
00111       output.points[idx].normal_x = n[0];
00112       output.points[idx].normal_y = n[1];
00113       output.points[idx].normal_z = n[2];
00114 
00115       flipNormalTowardsViewpoint (input_->points[(*indices_)[idx]], vpx_, vpy_, vpz_,
00116                                   output.points[idx].normal[0], output.points[idx].normal[1], output.points[idx].normal[2]);
00117     }
00118  }
00119 }
00120 
00121 #define PCL_INSTANTIATE_NormalEstimationOMP(T,NT) template class PCL_EXPORTS pcl::NormalEstimationOMP<T,NT>;
00122 
00123 #endif    // PCL_FEATURES_IMPL_NORMAL_3D_OMP_H_
00124 


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:25:51