greedy_verification.h
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of Willow Garage, Inc. nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  */
00036 
00037 #ifndef PCL_RECOGNITION_HV_GREEDY_H_
00038 #define PCL_RECOGNITION_HV_GREEDY_H_
00039 
00040 #include <pcl/pcl_macros.h>
00041 #include <pcl/recognition/hv/hypotheses_verification.h>
00042 #include <pcl/common/common.h>
00043 
00044 namespace pcl
00045 {
00046 
00052   template<typename ModelT, typename SceneT>
00053     class PCL_EXPORTS GreedyVerification : public HypothesisVerification<ModelT, SceneT>
00054     {
00055       using HypothesisVerification<ModelT, SceneT>::mask_;
00056       using HypothesisVerification<ModelT, SceneT>::scene_cloud_downsampled_;
00057       using HypothesisVerification<ModelT, SceneT>::scene_downsampled_tree_;
00058       using HypothesisVerification<ModelT, SceneT>::visible_models_;
00059       using HypothesisVerification<ModelT, SceneT>::resolution_;
00060       using HypothesisVerification<ModelT, SceneT>::inliers_threshold_;
00061 
00062       /*
00063        * \brief Recognition model using during the verification
00064        */
00065       class RecognitionModel
00066       {
00067       public:
00068         std::vector<int> explained_;
00069         typename pcl::PointCloud<ModelT>::Ptr cloud_;
00070         int bad_information_;
00071         int good_information_;
00072         int id_;
00073         float regularizer_;
00074       };
00075 
00076       /*
00077        * \brief Sorts recognition models based on the number of explained scene points and visible outliers
00078        */
00079       struct sortModelsClass
00080       {
00081         bool
00082         operator() (const boost::shared_ptr<RecognitionModel> & n1, const boost::shared_ptr<RecognitionModel> & n2)
00083         {
00084           float val1 = static_cast<float>(n1->good_information_) - static_cast<float>(n1->bad_information_) * n1->regularizer_;
00085           float val2 = static_cast<float>(n2->good_information_) - static_cast<float>(n2->bad_information_) * n2->regularizer_;
00086           return val1 > val2;
00087         }
00088       } sortModelsOp;
00089 
00090 
00091       /*
00092        * \brief Recognition model indices to keep track of the sorted recognition hypotheses
00093        */
00094       struct modelIndices
00095       {
00096         int index_;
00097         boost::shared_ptr<RecognitionModel> model_;
00098       };
00099 
00100       /*
00101        * \brief Sorts model indices similar to sortModelsClass
00102        */
00103       struct sortModelIndicesClass
00104       {
00105         bool
00106         operator() (const modelIndices & n1, const modelIndices & n2)
00107         {
00108           float val1 = static_cast<float>(n1.model_->good_information_) - static_cast<float>(n1.model_->bad_information_) * n1.model_->regularizer_;
00109           float val2 = static_cast<float>(n2.model_->good_information_) - static_cast<float>(n2.model_->bad_information_) * n2.model_->regularizer_;
00110           return val1 > val2;
00111         }
00112       } sortModelsIndicesOp;
00113 
00115       std::vector<modelIndices> indices_models_;
00116 
00118       std::vector<boost::shared_ptr<RecognitionModel> > recognition_models_;
00119 
00121       std::vector<std::vector<boost::shared_ptr<RecognitionModel> > > points_explained_by_rm_;
00122 
00124       float regularizer_;
00125 
00127       void
00128       initialize ();
00129 
00131       void
00132       sortModels ()
00133       {
00134         indices_models_.clear ();
00135         for (size_t i = 0; i < recognition_models_.size (); i++)
00136         {
00137           modelIndices mi;
00138           mi.index_ = static_cast<int> (i);
00139           mi.model_ = recognition_models_[i];
00140           indices_models_.push_back (mi);
00141         }
00142 
00143         std::sort (indices_models_.begin (), indices_models_.end (), sortModelsIndicesOp);
00144         //sort also recognition models
00145         std::sort (recognition_models_.begin (), recognition_models_.end (), sortModelsOp);
00146       }
00147 
00149       void
00150       updateGoodInformation (int i)
00151       {
00152         for (size_t k = 0; k < recognition_models_[i]->explained_.size (); k++)
00153         {
00154           //update good_information_ for all hypotheses that were explaining the same points as hypothesis i
00155           for (size_t kk = 0; kk < points_explained_by_rm_[recognition_models_[i]->explained_[k]].size (); kk++)
00156           {
00157             (points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->good_information_--;
00158             (points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->bad_information_++;
00159           }
00160         }
00161       }
00162 
00163     public:
00164 
00168       GreedyVerification (float reg = 1.5f) :
00169         HypothesisVerification<ModelT, SceneT> ()
00170       {
00171         regularizer_ = reg;
00172       }
00173 
00175       void
00176       verify ();
00177     };
00178 }
00179 
00180 #ifdef PCL_NO_PRECOMPILE
00181 #include <pcl/recognition/impl/hv/greedy_verification.hpp>
00182 #endif
00183 
00184 #endif /* PCL_RECOGNITION_HV_GREEDY_H_ */


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:24:36