fpfh_omp.hpp
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2011, Willow Garage, Inc.
00006  *  Copyright (c) 2012-, Open Perception, Inc.
00007  *
00008  *  All rights reserved.
00009  *
00010  *  Redistribution and use in source and binary forms, with or without
00011  *  modification, are permitted provided that the following conditions
00012  *  are met:
00013  *
00014  *   * Redistributions of source code must retain the above copyright
00015  *     notice, this list of conditions and the following disclaimer.
00016  *   * Redistributions in binary form must reproduce the above
00017  *     copyright notice, this list of conditions and the following
00018  *     disclaimer in the documentation and/or other materials provided
00019  *     with the distribution.
00020  *   * Neither the name of the copyright holder(s) nor the names of its
00021  *     contributors may be used to endorse or promote products derived
00022  *     from this software without specific prior written permission.
00023  *
00024  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00025  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00026  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00027  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00028  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00029  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00030  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00031  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00032  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00033  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00034  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00035  *  POSSIBILITY OF SUCH DAMAGE.
00036  *
00037  * $Id$
00038  *
00039  */
00040 
00041 #ifndef PCL_FEATURES_IMPL_FPFH_OMP_H_
00042 #define PCL_FEATURES_IMPL_FPFH_OMP_H_
00043 
00044 #include <pcl/features/fpfh_omp.h>
00045 
00047 template <typename PointInT, typename PointNT, typename PointOutT> void
00048 pcl::FPFHEstimationOMP<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
00049 {
00050   std::vector<int> spfh_indices_vec;
00051   std::vector<int> spfh_hist_lookup (surface_->points.size ());
00052 
00053   // Build a list of (unique) indices for which we will need to compute SPFH signatures
00054   // (We need an SPFH signature for every point that is a neighbor of any point in input_[indices_])
00055   if (surface_ != input_ ||
00056       indices_->size () != surface_->points.size ())
00057   { 
00058     std::vector<int> nn_indices (k_); // \note These resizes are irrelevant for a radiusSearch ().
00059     std::vector<float> nn_dists (k_); 
00060 
00061     std::set<int> spfh_indices_set;
00062     for (size_t idx = 0; idx < indices_->size (); ++idx)
00063     {
00064       int p_idx = (*indices_)[idx];
00065       if (this->searchForNeighbors (p_idx, search_parameter_, nn_indices, nn_dists) == 0)
00066         continue;
00067       
00068       spfh_indices_set.insert (nn_indices.begin (), nn_indices.end ());
00069     }
00070     spfh_indices_vec.resize (spfh_indices_set.size ());
00071     std::copy (spfh_indices_set.begin (), spfh_indices_set.end (), spfh_indices_vec.begin ());
00072   }
00073   else
00074   {
00075     // Special case: When a feature must be computed at every point, there is no need for a neighborhood search
00076     spfh_indices_vec.resize (indices_->size ());
00077     for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
00078       spfh_indices_vec[idx] = idx;
00079   }
00080 
00081   // Initialize the arrays that will store the SPFH signatures
00082   size_t data_size = spfh_indices_vec.size ();
00083   hist_f1_.setZero (data_size, nr_bins_f1_);
00084   hist_f2_.setZero (data_size, nr_bins_f2_);
00085   hist_f3_.setZero (data_size, nr_bins_f3_);
00086 
00087   std::vector<int> nn_indices (k_); // \note These resizes are irrelevant for a radiusSearch ().
00088   std::vector<float> nn_dists (k_); 
00089 
00090   // Compute SPFH signatures for every point that needs them
00091 
00092 #ifdef _OPENMP
00093 #pragma omp parallel for shared (spfh_hist_lookup) private (nn_indices, nn_dists) num_threads(threads_)
00094 #endif
00095   for (int i = 0; i < static_cast<int> (spfh_indices_vec.size ()); ++i)
00096   {
00097     // Get the next point index
00098     int p_idx = spfh_indices_vec[i];
00099 
00100     // Find the neighborhood around p_idx
00101     if (this->searchForNeighbors (*surface_, p_idx, search_parameter_, nn_indices, nn_dists) == 0)
00102       continue;
00103 
00104     // Estimate the SPFH signature around p_idx
00105     this->computePointSPFHSignature (*surface_, *normals_, p_idx, i, nn_indices, hist_f1_, hist_f2_, hist_f3_);
00106 
00107     // Populate a lookup table for converting a point index to its corresponding row in the spfh_hist_* matrices
00108     spfh_hist_lookup[p_idx] = i;
00109   }
00110 
00111   // Intialize the array that will store the FPFH signature
00112   int nr_bins = nr_bins_f1_ + nr_bins_f2_ + nr_bins_f3_;
00113 
00114   nn_indices.clear();
00115   nn_dists.clear();
00116 
00117   // Iterate over the entire index vector
00118 #ifdef _OPENMP
00119 #pragma omp parallel for shared (output) private (nn_indices, nn_dists) num_threads(threads_)
00120 #endif
00121   for (int idx = 0; idx < static_cast<int> (indices_->size ()); ++idx)
00122   {
00123     // Find the indices of point idx's neighbors...
00124     if (!isFinite ((*input_)[(*indices_)[idx]]) ||
00125         this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00126     {
00127       for (int d = 0; d < nr_bins; ++d)
00128         output.points[idx].histogram[d] = std::numeric_limits<float>::quiet_NaN ();
00129   
00130       output.is_dense = false;
00131       continue;
00132     }
00133 
00134 
00135     // ... and remap the nn_indices values so that they represent row indices in the spfh_hist_* matrices 
00136     // instead of indices into surface_->points
00137     for (size_t i = 0; i < nn_indices.size (); ++i)
00138       nn_indices[i] = spfh_hist_lookup[nn_indices[i]];
00139 
00140     // Compute the FPFH signature (i.e. compute a weighted combination of local SPFH signatures) ...
00141     Eigen::VectorXf fpfh_histogram = Eigen::VectorXf::Zero (nr_bins);
00142     weightPointSPFHSignature (hist_f1_, hist_f2_, hist_f3_, nn_indices, nn_dists, fpfh_histogram);
00143 
00144     // ...and copy it into the output cloud
00145     for (int d = 0; d < nr_bins; ++d)
00146       output.points[idx].histogram[d] = fpfh_histogram[d];
00147   }
00148 
00149 }
00150 
00151 #define PCL_INSTANTIATE_FPFHEstimationOMP(T,NT,OutT) template class PCL_EXPORTS pcl::FPFHEstimationOMP<T,NT,OutT>;
00152 
00153 #endif    // PCL_FEATURES_IMPL_FPFH_OMP_H_ 
00154 


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:24:14