edge_aware_plane_comparator.h
Go to the documentation of this file.
00001 /*
00002  * Software License Agreement (BSD License)
00003  *
00004  *  Point Cloud Library (PCL) - www.pointclouds.org
00005  *  Copyright (c) 2010-2012, Willow Garage, Inc.
00006  *
00007  *  All rights reserved.
00008  *
00009  *  Redistribution and use in source and binary forms, with or without
00010  *  modification, are permitted provided that the following conditions
00011  *  are met:
00012  *
00013  *   * Redistributions of source code must retain the above copyright
00014  *     notice, this list of conditions and the following disclaimer.
00015  *   * Redistributions in binary form must reproduce the above
00016  *     copyright notice, this list of conditions and the following
00017  *     disclaimer in the documentation and/or other materials provided
00018  *     with the distribution.
00019  *   * Neither the name of the copyright holder(s) nor the names of its
00020  *     contributors may be used to endorse or promote products derived
00021  *     from this software without specific prior written permission.
00022  *
00023  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00024  *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00025  *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
00026  *  FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
00027  *  COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
00028  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
00029  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
00030  *  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
00031  *  CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
00032  *  LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
00033  *  ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
00034  *  POSSIBILITY OF SUCH DAMAGE.
00035  *
00036  * $Id: extract_clusters.h 5027 2012-03-12 03:10:45Z rusu $
00037  *
00038  */
00039 
00040 #ifndef PCL_SEGMENTATION_EDGE_AWARE_PLANE_COMPARATOR_H_
00041 #define PCL_SEGMENTATION_EDGE_AWARE_PLANE_COMPARATOR_H_
00042 
00043 #include <pcl/segmentation/boost.h>
00044 #include <pcl/segmentation/plane_coefficient_comparator.h>
00045 
00046 namespace pcl
00047 {
00054   template<typename PointT, typename PointNT>
00055   class EdgeAwarePlaneComparator: public PlaneCoefficientComparator<PointT, PointNT>
00056   {
00057     public:
00058       typedef typename Comparator<PointT>::PointCloud PointCloud;
00059       typedef typename Comparator<PointT>::PointCloudConstPtr PointCloudConstPtr;
00060       
00061       typedef typename pcl::PointCloud<PointNT> PointCloudN;
00062       typedef typename PointCloudN::Ptr PointCloudNPtr;
00063       typedef typename PointCloudN::ConstPtr PointCloudNConstPtr;
00064       
00065       typedef boost::shared_ptr<EdgeAwarePlaneComparator<PointT, PointNT> > Ptr;
00066       typedef boost::shared_ptr<const EdgeAwarePlaneComparator<PointT, PointNT> > ConstPtr;
00067 
00068       using pcl::PlaneCoefficientComparator<PointT, PointNT>::input_;
00069       using pcl::PlaneCoefficientComparator<PointT, PointNT>::normals_;
00070       using pcl::PlaneCoefficientComparator<PointT, PointNT>::plane_coeff_d_;
00071       using pcl::PlaneCoefficientComparator<PointT, PointNT>::angular_threshold_;
00072       using pcl::PlaneCoefficientComparator<PointT, PointNT>::distance_threshold_;
00073       using pcl::PlaneCoefficientComparator<PointT, PointNT>::depth_dependent_;
00074       using pcl::PlaneCoefficientComparator<PointT, PointNT>::z_axis_;
00075 
00077       EdgeAwarePlaneComparator () :
00078         distance_map_threshold_ (5),
00079         curvature_threshold_ (0.04f),
00080         euclidean_distance_threshold_ (0.04f)
00081       {
00082       }
00083 
00087       EdgeAwarePlaneComparator (const float *distance_map) : 
00088         distance_map_ (distance_map),
00089         distance_map_threshold_ (5),
00090         curvature_threshold_ (0.04f),
00091         euclidean_distance_threshold_ (0.04f)
00092       {
00093       }
00094 
00096       virtual
00097       ~EdgeAwarePlaneComparator ()
00098       {
00099       }
00100 
00105       inline void
00106       setDistanceMap (const float *distance_map)
00107       {
00108         distance_map_ = distance_map;
00109       }
00110 
00112       const float*
00113       getDistanceMap () const
00114       {
00115         return (distance_map_);
00116       }
00117 
00121       void
00122       setCurvatureThreshold (float curvature_threshold)
00123       {
00124         curvature_threshold_ = curvature_threshold;
00125       }
00126 
00128       inline float
00129       getCurvatureThreshold () const
00130       {
00131         return (curvature_threshold_);
00132       }
00133 
00137       void
00138       setDistanceMapThreshold (float distance_map_threshold)
00139       {
00140         distance_map_threshold_ = distance_map_threshold;
00141       }
00142 
00144       inline float
00145       getDistanceMapThreshold () const
00146       {
00147         return (distance_map_threshold_);
00148       }
00149 
00153       void
00154       setEuclideanDistanceThreshold (float euclidean_distance_threshold)
00155       {
00156         euclidean_distance_threshold_ = euclidean_distance_threshold;
00157       }
00158 
00160       inline float
00161       getEuclideanDistanceThreshold () const
00162       {
00163         return (euclidean_distance_threshold_);
00164       }
00165       
00166     protected:
00171       bool
00172       compare (int idx1, int idx2) const
00173       {
00174         // Note: there are two distance thresholds here that make sense to scale with depth.
00175         // dist_threshold is on the perpendicular distance to the plane, as in plane comparator
00176         // We additionally check euclidean distance to ensure that we don't have neighboring coplanar points
00177         // that aren't close in euclidean space (think two tables separated by a meter, viewed from an angle
00178         // where the surfaces are adjacent in image space).
00179         float dist_threshold = distance_threshold_;
00180         float euclidean_dist_threshold = euclidean_distance_threshold_;
00181         if (depth_dependent_)
00182         {
00183           Eigen::Vector3f vec = input_->points[idx1].getVector3fMap ();
00184           float z = vec.dot (z_axis_);
00185           dist_threshold *= z * z;
00186           euclidean_dist_threshold *= z * z;
00187         }
00188         
00189         float dx = input_->points[idx1].x - input_->points[idx2].x;
00190         float dy = input_->points[idx1].y - input_->points[idx2].y;
00191         float dz = input_->points[idx1].z - input_->points[idx2].z;
00192         float dist = sqrtf (dx*dx + dy*dy + dz*dz);
00193 
00194         bool normal_ok = (normals_->points[idx1].getNormalVector3fMap ().dot (normals_->points[idx2].getNormalVector3fMap () ) > angular_threshold_ );
00195         bool dist_ok = (dist < euclidean_dist_threshold);
00196 
00197         bool curvature_ok = normals_->points[idx1].curvature < curvature_threshold_;
00198         bool plane_d_ok = fabs ((*plane_coeff_d_)[idx1] - (*plane_coeff_d_)[idx2]) < dist_threshold;
00199         
00200         if (distance_map_[idx1] < distance_map_threshold_)    
00201           curvature_ok = false;
00202         
00203         return (dist_ok && normal_ok && curvature_ok && plane_d_ok);
00204       }
00205 
00206     protected:
00207       const float* distance_map_;
00208       int distance_map_threshold_;
00209       float curvature_threshold_;
00210       float euclidean_distance_threshold_;
00211   };
00212 }
00213 
00214 #endif // PCL_SEGMENTATION_PLANE_COEFFICIENT_COMPARATOR_H_


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:23:25