Static Public Member Functions
pcl::on_nurbs::NurbsTools Class Reference

Some useful tools for initialization, point search, ... More...

#include <nurbs_tools.h>

List of all members.

Static Public Member Functions

static void computeBoundingBox (const ON_NurbsCurve &nurbs, Eigen::Vector3d &_min, Eigen::Vector3d &_max)
static void computeBoundingBox (const ON_NurbsSurface &nurbs, Eigen::Vector3d &_min, Eigen::Vector3d &_max)
static Eigen::Vector3d computeMean (const vector_vec3d &data)
 Compute the mean of a set of points.
static Eigen::Vector2d computeMean (const vector_vec2d &data)
 Compute the mean of a set of points.
static double computeRScale (const Eigen::Vector3d &_min, const Eigen::Vector3d &_max)
static Eigen::Vector3d computeVariance (const Eigen::Vector3d &mean, const vector_vec3d &data)
 Compute the variance of a set of points.
static Eigen::Vector2d computeVariance (const Eigen::Vector2d &mean, const vector_vec2d &data)
 Compute the variance of a set of points.
static void downsample_random (const vector_vec3d &data1, vector_vec3d &data2, unsigned size)
 Downsample data points to a certain size.
static void downsample_random (vector_vec3d &data1, unsigned size)
 Downsample data points to a certain size.
static unsigned getClosestPoint (const Eigen::Vector2d &point, const vector_vec2d &data)
 Get the closest point with respect to 'point'.
static unsigned getClosestPoint (const Eigen::Vector3d &point, const vector_vec3d &data)
 Get the closest point with respect to 'point'.
static unsigned getClosestPoint (const Eigen::Vector2d &point, const Eigen::Vector2d &dir, const vector_vec2d &data, unsigned &idxcp)
 Get the closest point with respect to 'point' in Non-Euclidean metric.
static void pca (const vector_vec3d &data, Eigen::Vector3d &mean, Eigen::Matrix3d &eigenvectors, Eigen::Vector3d &eigenvalues)
 PCA - principal-component-analysis.
static void pca (const vector_vec2d &data, Eigen::Vector2d &mean, Eigen::Matrix2d &eigenvectors, Eigen::Vector2d &eigenvalues)
 PCA - principal-component-analysis.

Detailed Description

Some useful tools for initialization, point search, ...

Definition at line 59 of file nurbs_tools.h.


Member Function Documentation

void NurbsTools::computeBoundingBox ( const ON_NurbsCurve nurbs,
Eigen::Vector3d &  _min,
Eigen::Vector3d &  _max 
) [static]

compute bounding box of curve control points

Definition at line 258 of file nurbs_tools.cpp.

void NurbsTools::computeBoundingBox ( const ON_NurbsSurface nurbs,
Eigen::Vector3d &  _min,
Eigen::Vector3d &  _max 
) [static]

Definition at line 284 of file nurbs_tools.cpp.

Eigen::Vector3d NurbsTools::computeMean ( const vector_vec3d data) [static]

Compute the mean of a set of points.

Parameters:
[in]dataSet of points.

Definition at line 196 of file nurbs_tools.cpp.

Eigen::Vector2d NurbsTools::computeMean ( const vector_vec2d data) [static]

Compute the mean of a set of points.

Parameters:
[in]dataSet of points.

Definition at line 210 of file nurbs_tools.cpp.

double NurbsTools::computeRScale ( const Eigen::Vector3d &  _min,
const Eigen::Vector3d &  _max 
) [static]

Definition at line 313 of file nurbs_tools.cpp.

Eigen::Vector3d NurbsTools::computeVariance ( const Eigen::Vector3d &  mean,
const vector_vec3d data 
) [static]

Compute the variance of a set of points.

Parameters:
[in]dataSet of points

Definition at line 224 of file nurbs_tools.cpp.

Eigen::Vector2d NurbsTools::computeVariance ( const Eigen::Vector2d &  mean,
const vector_vec2d data 
) [static]

Compute the variance of a set of points.

Parameters:
[in]dataSet of points

Definition at line 241 of file nurbs_tools.cpp.

void NurbsTools::downsample_random ( const vector_vec3d data1,
vector_vec3d data2,
unsigned  size 
) [static]

Downsample data points to a certain size.

Parameters:
[in]data1The original set of points.
[out]data2The downsampled set of points of size 'size'.
[in]sizeThe desired size of the resulting set of points.

Definition at line 49 of file nurbs_tools.cpp.

void NurbsTools::downsample_random ( vector_vec3d data1,
unsigned  size 
) [static]

Downsample data points to a certain size.

Parameters:
in/out]data1 The set of points for downsampling; will be replaced by the resulting set of points of size 'size'.
[in]sizeThe desired size of the resulting set of points.

Definition at line 68 of file nurbs_tools.cpp.

unsigned NurbsTools::getClosestPoint ( const Eigen::Vector2d &  point,
const vector_vec2d data 
) [static]

Get the closest point with respect to 'point'.

Parameters:
[in]pointThe point to which the closest point is searched for.
[in]dataVector containing the set of points for searching.

Definition at line 119 of file nurbs_tools.cpp.

unsigned NurbsTools::getClosestPoint ( const Eigen::Vector3d &  point,
const vector_vec3d data 
) [static]

Get the closest point with respect to 'point'.

Parameters:
[in]pointThe point to which the closest point is searched for.
[in]dataVector containing the set of points for searching.

Definition at line 139 of file nurbs_tools.cpp.

unsigned NurbsTools::getClosestPoint ( const Eigen::Vector2d &  point,
const Eigen::Vector2d &  dir,
const vector_vec2d data,
unsigned &  idxcp 
) [static]

Get the closest point with respect to 'point' in Non-Euclidean metric.

Related paper: TODO

Parameters:
[in]pointThe point to which the closest point is searched for.
[in]dirThe direction defining 'inside' and 'outside'
[in]dataVector containing the set of points for searching.
[out]idxcpClosest point with respect to Euclidean metric.

Definition at line 159 of file nurbs_tools.cpp.

void NurbsTools::pca ( const vector_vec3d data,
Eigen::Vector3d &  mean,
Eigen::Matrix3d &  eigenvectors,
Eigen::Vector3d &  eigenvalues 
) [static]

PCA - principal-component-analysis.

Parameters:
[in]dataSet of points.
[out]meanThe mean of the set of points.
[out]eigenvectorsMatrix containing column-wise the eigenvectors of the set of points.
[out]eigenvaluesThe eigenvalues of the set of points with respect to the eigenvectors.

Definition at line 321 of file nurbs_tools.cpp.

void NurbsTools::pca ( const vector_vec2d data,
Eigen::Vector2d &  mean,
Eigen::Matrix2d &  eigenvectors,
Eigen::Vector2d &  eigenvalues 
) [static]

PCA - principal-component-analysis.

Parameters:
[in]dataSet of points.
[out]meanThe mean of the set of points.
[out]eigenvectorsMatrix containing column-wise the eigenvectors of the set of points.
[out]eigenvaluesThe eigenvalues of the set of points with respect to the eigenvectors.

Definition at line 359 of file nurbs_tools.cpp.


The documentation for this class was generated from the following files:


pcl
Author(s): Open Perception
autogenerated on Wed Aug 26 2015 15:44:32