00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041 #ifndef PCL_FEATURES_IMPL_BOUNDARY_H_
00042 #define PCL_FEATURES_IMPL_BOUNDARY_H_
00043
00044 #include <pcl/features/boundary.h>
00045 #include <cfloat>
00046
00048 template <typename PointInT, typename PointNT, typename PointOutT> bool
00049 pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::isBoundaryPoint (
00050 const pcl::PointCloud<PointInT> &cloud, int q_idx,
00051 const std::vector<int> &indices,
00052 const Eigen::Vector4f &u, const Eigen::Vector4f &v,
00053 const float angle_threshold)
00054 {
00055 return (isBoundaryPoint (cloud, cloud.points[q_idx], indices, u, v, angle_threshold));
00056 }
00057
00059 template <typename PointInT, typename PointNT, typename PointOutT> bool
00060 pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::isBoundaryPoint (
00061 const pcl::PointCloud<PointInT> &cloud, const PointInT &q_point,
00062 const std::vector<int> &indices,
00063 const Eigen::Vector4f &u, const Eigen::Vector4f &v,
00064 const float angle_threshold)
00065 {
00066 if (indices.size () < 3)
00067 return (false);
00068
00069 if (!pcl_isfinite (q_point.x) || !pcl_isfinite (q_point.y) || !pcl_isfinite (q_point.z))
00070 return (false);
00071
00072
00073 std::vector<float> angles (indices.size ());
00074 float max_dif = FLT_MIN, dif;
00075 int cp = 0;
00076
00077 for (size_t i = 0; i < indices.size (); ++i)
00078 {
00079 if (!pcl_isfinite (cloud.points[indices[i]].x) ||
00080 !pcl_isfinite (cloud.points[indices[i]].y) ||
00081 !pcl_isfinite (cloud.points[indices[i]].z))
00082 continue;
00083
00084 Eigen::Vector4f delta = cloud.points[indices[i]].getVector4fMap () - q_point.getVector4fMap ();
00085 if (delta == Eigen::Vector4f::Zero())
00086 continue;
00087
00088 angles[cp++] = atan2f (v.dot (delta), u.dot (delta));
00089 }
00090 if (cp == 0)
00091 return (false);
00092
00093 angles.resize (cp);
00094 std::sort (angles.begin (), angles.end ());
00095
00096
00097 for (size_t i = 0; i < angles.size () - 1; ++i)
00098 {
00099 dif = angles[i + 1] - angles[i];
00100 if (max_dif < dif)
00101 max_dif = dif;
00102 }
00103
00104 dif = 2 * static_cast<float> (M_PI) - angles[angles.size () - 1] + angles[0];
00105 if (max_dif < dif)
00106 max_dif = dif;
00107
00108
00109 if (max_dif > angle_threshold)
00110 return (true);
00111 else
00112 return (false);
00113 }
00114
00116 template <typename PointInT, typename PointNT, typename PointOutT> void
00117 pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
00118 {
00119
00120
00121 std::vector<int> nn_indices (k_);
00122 std::vector<float> nn_dists (k_);
00123
00124 Eigen::Vector4f u = Eigen::Vector4f::Zero (), v = Eigen::Vector4f::Zero ();
00125
00126 output.is_dense = true;
00127
00128 if (input_->is_dense)
00129 {
00130
00131 for (size_t idx = 0; idx < indices_->size (); ++idx)
00132 {
00133 if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00134 {
00135 output.points[idx].boundary_point = std::numeric_limits<uint8_t>::quiet_NaN ();
00136 output.is_dense = false;
00137 continue;
00138 }
00139
00140
00141
00142
00143 getCoordinateSystemOnPlane (normals_->points[(*indices_)[idx]], u, v);
00144
00145
00146 output.points[idx].boundary_point = isBoundaryPoint (*surface_, input_->points[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
00147 }
00148 }
00149 else
00150 {
00151
00152 for (size_t idx = 0; idx < indices_->size (); ++idx)
00153 {
00154 if (!isFinite ((*input_)[(*indices_)[idx]]) ||
00155 this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
00156 {
00157 output.points[idx].boundary_point = std::numeric_limits<uint8_t>::quiet_NaN ();
00158 output.is_dense = false;
00159 continue;
00160 }
00161
00162
00163
00164
00165 getCoordinateSystemOnPlane (normals_->points[(*indices_)[idx]], u, v);
00166
00167
00168 output.points[idx].boundary_point = isBoundaryPoint (*surface_, input_->points[(*indices_)[idx]], nn_indices, u, v, angle_threshold_);
00169 }
00170 }
00171 }
00172
00173 #define PCL_INSTANTIATE_BoundaryEstimation(PointInT,PointNT,PointOutT) template class PCL_EXPORTS pcl::BoundaryEstimation<PointInT, PointNT, PointOutT>;
00174
00175 #endif // PCL_FEATURES_IMPL_BOUNDARY_H_
00176