van_der_pol.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_optimal_control.hpp>
00036 #include <acado_gnuplot.hpp>
00037 
00038 
00039 /* >>> start tutorial code >>> */
00040 int main( ){
00041 
00042     USING_NAMESPACE_ACADO;
00043 
00044 
00045     // INTRODUCE THE VARIABLES:
00046     // -------------------------
00047 
00048     DifferentialState         x1,x2;
00049     Control                   u;
00050     Parameter                 p;
00051     Parameter                 T;
00052     DifferentialEquation      f(0.0,T);
00053 
00054     const double t_start =  0.0;
00055 
00056 
00057     // DEFINE A DIFFERENTIAL EQUATION:
00058     // -------------------------------
00059 
00060     f << dot(x1) ==  (1.0-x2*x2)*x1 - x2 + p*u;
00061     f << dot(x2) ==  x1;
00062 
00063 
00064     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00065     // ----------------------------------
00066     OCP ocp( t_start, T, 27 );
00067 
00068 
00069  //   ocp.minimizeMayerTerm( T );
00070     ocp.minimizeLagrangeTerm(10*x1*x1 + 10*x2*x2 + u*u);
00071 
00072     ocp.subjectTo( f );
00073     ocp.subjectTo( AT_START, x1 ==  0.0 );
00074     ocp.subjectTo( AT_START, x2 ==  1.0 );
00075 
00076     ocp.subjectTo( AT_END  , x1 ==  0.0 );
00077     ocp.subjectTo( AT_END  , x2 ==  0.0 );
00078 
00079     ocp.subjectTo( -0.5 <= u <= 1.0 );
00080 
00081     ocp.subjectTo( p == 1.0 );
00082     ocp.subjectTo( 0.0 <= T <= 20.0 );
00083 
00084 
00085     // VISUALIZE THE RESULTS IN A GNUPLOT WINDOW:
00086     // ------------------------------------------
00087     GnuplotWindow window;
00088         window << x1;
00089         window << x2;
00090         window << u;
00091         window << T;
00092 
00093     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
00094     // ---------------------------------------------------
00095     OptimizationAlgorithm algorithm(ocp);
00096 
00097     algorithm.initializeControls("van_der_pol_controls.txt");
00098 
00099     algorithm << window;
00100     algorithm.solve();
00101 
00102     algorithm.getControls("van_der_pol_controls2.txt");
00103 
00104     return 0;
00105 }
00106 /* <<< end tutorial code <<< */
00107 
00108 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 12:01:31