00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado_optimal_control.hpp> 00036 #include <acado_gnuplot.hpp> 00037 00038 00039 int main( ){ 00040 00041 USING_NAMESPACE_ACADO 00042 00043 00044 // INTRODUCE THE VARIABLES: 00045 // ------------------------- 00046 00047 DifferentialState s,v,m; 00048 Control u ; 00049 Parameter T ; 00050 00051 DifferentialEquation f( 0.0, T ); 00052 00053 00054 // DEFINE A DIFFERENTIAL EQUATION: 00055 // ------------------------------- 00056 00057 f << dot(s) == v; 00058 f << dot(v) == (u-0.2*v*v)/m; 00059 f << dot(m) == -0.01*u*u; 00060 00061 00062 // DEFINE AN OPTIMAL CONTROL PROBLEM: 00063 // ---------------------------------- 00064 OCP ocp( 0, T, 20 ); 00065 00066 ocp.minimizeMayerTerm( T ); 00067 ocp.subjectTo( f ); 00068 00069 ocp.subjectTo( AT_START, s == 0.0 ); 00070 ocp.subjectTo( AT_START, v == 0.0 ); 00071 ocp.subjectTo( AT_START, m == 1.0 ); 00072 00073 ocp.subjectTo( AT_END , s == 10.0 ); 00074 ocp.subjectTo( AT_END , v == 0.0 ); 00075 00076 ocp.subjectTo( -0.1 <= v <= 1.7 ); 00077 ocp.subjectTo( -1.1 <= u <= 1.1 ); 00078 ocp.subjectTo( 5.0 <= T <= 15.0 ); 00079 00080 00081 // VISUALIZE THE RESULTS IN A GNUPLOT WINDOW: 00082 // ------------------------------------------ 00083 GnuplotWindow window; 00084 window.addSubplot( s, "THE DISTANCE s" ); 00085 window.addSubplot( v, "THE VELOCITY v" ); 00086 window.addSubplot( m, "THE MASS m" ); 00087 window.addSubplot( u, "THE CONTROL INPUT u" ); 00088 00089 00090 // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP: 00091 // --------------------------------------------------- 00092 OptimizationAlgorithm algorithm(ocp); 00093 00094 algorithm.set( MAX_NUM_ITERATIONS, 20 ); 00095 // algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN ); 00096 // algorithm.set( HESSIAN_PROJECTION_FACTOR, 1.0 ); 00097 00098 algorithm << window; 00099 00100 00101 // algorithm.initializeDifferentialStates("tor_states.txt"); 00102 // algorithm.initializeParameters("tor_pars.txt"); 00103 // algorithm.initializeControls("tor_controls.txt"); 00104 00105 algorithm.solve(); 00106 00107 // algorithm.getDifferentialStates("tor_states.txt"); 00108 // algorithm.getParameters("tor_pars.txt"); 00109 // algorithm.getControls("tor_controls.txt"); 00110 00111 return 0; 00112 } 00113 00114 00115