Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036
00037
00038
00039 int main( ){
00040
00041 USING_NAMESPACE_ACADO
00042
00043
00044
00045
00046 Parameter y1,y2;
00047
00048
00049
00050
00051 NLP nlp;
00052 nlp.minimize( 0, y1 );
00053 nlp.minimize( 1, y2 );
00054
00055 nlp.subjectTo( 0.0 <= y1 <= 5.0 );
00056 nlp.subjectTo( 0.0 <= y2 <= 5.2 );
00057 nlp.subjectTo( 0.0 <= y2 - 5.0*exp(-y1) - 2.0*exp(-0.5*(y1-3.0)*(y1-3.0)) );
00058
00059
00060
00061
00062 MultiObjectiveAlgorithm algorithm(nlp);
00063
00064 algorithm.set( PARETO_FRONT_GENERATION, PFG_WEIGHTED_SUM );
00065 algorithm.set( PARETO_FRONT_DISCRETIZATION, 41 );
00066 algorithm.set( KKT_TOLERANCE, 1e-12 );
00067
00068
00069 algorithm.solve();
00070
00071 algorithm.getWeights("scalar2_ws_weights.txt");
00072
00073
00074
00075
00076 VariablesGrid paretoFront;
00077 algorithm.getParetoFront( paretoFront );
00078
00079 GnuplotWindow window1;
00080 window1.addSubplot( paretoFront, "Pareto Front y1 vs y2", "y1","y2", PM_POINTS );
00081 window1.plot( );
00082
00083 paretoFront.print();
00084
00085
00086
00087
00088 algorithm.getParetoFrontWithFilter( paretoFront );
00089
00090 GnuplotWindow window2;
00091 window2.addSubplot( paretoFront, "Pareto Front (with filter) y1 vs y2", "y1","y2", PM_POINTS );
00092 window2.plot( );
00093
00094 paretoFront.print();
00095
00096
00097
00098
00099 algorithm.printInfo();
00100
00101 return 0;
00102 }
00103
00104