Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036
00037
00038
00039 int main( ){
00040
00041 USING_NAMESPACE_ACADO
00042
00043
00044
00045
00046 Parameter y1,y2;
00047
00048
00049
00050
00051 NLP nlp;
00052 nlp.minimize( 0, y1 );
00053 nlp.minimize( 1, y2 );
00054
00055 nlp.subjectTo( 0.0 <= y1 <= 5.0 );
00056 nlp.subjectTo( 0.0 <= y2 <= 5.2 );
00057 nlp.subjectTo( 0.0 <= y2 - 5.0*exp(-y1) - 2.0*exp(-0.5*(y1-3.0)*(y1-3.0)) );
00058
00059
00060
00061
00062 MultiObjectiveAlgorithm algorithm(nlp);
00063
00064 algorithm.set( PARETO_FRONT_GENERATION, PFG_NORMALIZED_NORMAL_CONSTRAINT );
00065 algorithm.set( PARETO_FRONT_DISCRETIZATION, 41 );
00066 algorithm.set( KKT_TOLERANCE, 1e-12 );
00067
00068
00069 algorithm.initializeParameters("initial_scalar2_2.txt");
00070 algorithm.solveSingleObjective(1);
00071
00072
00073 algorithm.solveSingleObjective(0);
00074
00075
00076 algorithm.initializeParameters("initial_scalar2_2.txt");
00077
00078 algorithm.solve();
00079
00080
00081
00082
00083 VariablesGrid paretoFront;
00084 algorithm.getParetoFront( paretoFront );
00085 algorithm.getWeights("scalar2_nnc_weights.txt");
00086
00087 GnuplotWindow window1;
00088 window1.addSubplot( paretoFront, "Pareto Front y1 vs y2", "y1","y2", PM_POINTS );
00089 window1.plot( );
00090
00091 paretoFront.print();
00092
00093
00094
00095
00096 algorithm.getParetoFrontWithFilter( paretoFront );
00097 algorithm.getWeightsWithFilter("scalar2_nnc_weights_filtered.txt");
00098
00099 GnuplotWindow window2;
00100 window2.addSubplot( paretoFront, "Pareto Front (with filter) y1 vs y2", "y1","y2", PM_POINTS );
00101 window2.plot( );
00102
00103 paretoFront.print();
00104
00105
00106
00107
00108 algorithm.printInfo();
00109
00110 return 0;
00111 }
00112
00113