Go to the documentation of this file.00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036
00037
00038
00039 int main( ){
00040
00041 USING_NAMESPACE_ACADO
00042
00043
00044
00045
00046 Parameter y1,y2;
00047
00048
00049
00050
00051 NLP nlp;
00052 nlp.minimize( 0, y1 );
00053 nlp.minimize( 1, y2 );
00054
00055 nlp.subjectTo( 0.0 <= y1 <= 5.0 );
00056 nlp.subjectTo( 0.0 <= y2 <= 5.2 );
00057 nlp.subjectTo( 0.0 <= y2 - 5.0*exp(-y1) - 2.0*exp(-0.5*(y1-3.0)*(y1-3.0)) );
00058
00059
00060
00061
00062 MultiObjectiveAlgorithm algorithm(nlp);
00063
00064 algorithm.set( PARETO_FRONT_GENERATION, PFG_NORMAL_BOUNDARY_INTERSECTION );
00065 algorithm.set( PARETO_FRONT_DISCRETIZATION, 41 );
00066 algorithm.set( KKT_TOLERANCE, 1e-12 );
00067
00068
00069 algorithm.initializeParameters("initial_scalar2_2.txt");
00070 algorithm.solveSingleObjective(1);
00071
00072
00073 algorithm.solveSingleObjective(0);
00074
00075
00076 algorithm.solve();
00077
00078
00079
00080
00081 VariablesGrid paretoFront;
00082 algorithm.getParetoFront( paretoFront );
00083 algorithm.getWeights("scalar2_nbi_weights.txt");
00084
00085 GnuplotWindow window1;
00086 window1.addSubplot( paretoFront, "Pareto Front y1 vs y2", "y1","y2", PM_POINTS );
00087 window1.plot( );
00088
00089 paretoFront.print();
00090
00091
00092
00093
00094 algorithm.getParetoFrontWithFilter( paretoFront );
00095 algorithm.getWeightsWithFilter("scalar2_nbi_weights_filtered.txt");
00096
00097 GnuplotWindow window2;
00098 window2.addSubplot( paretoFront, "Pareto Front (with filter) y1 vs y2", "y1","y2", PM_POINTS );
00099 window2.plot( );
00100
00101 paretoFront.print();
00102
00103
00104
00105
00106 algorithm.printInfo();
00107
00108 return 0;
00109 }
00110
00111