rocket_with_logging.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036 
00037 
00038 /* >>> start tutorial code >>> */
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043     Logger::instance().setLogLevel( LVL_DEBUG );
00044 
00045     // INTRODUCE THE VARIABLES:
00046     // -------------------------
00047     DifferentialState     s,v,m;
00048     Control               u    ;
00049     DifferentialEquation  f    ;
00050 
00051     const double t_start =  0.0;
00052     const double t_end   = 10.0;
00053 
00054     // DEFINE A DIFFERENTIAL EQUATION:
00055     // -------------------------------
00056     f << dot(s) == v;
00057     f << dot(v) == (u-0.02*v*v)/m;
00058     f << dot(m) == -0.01*u*u;
00059 
00060 
00061     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00062     // ----------------------------------
00063     OCP ocp( t_start, t_end, 20 );
00064     ocp.minimizeLagrangeTerm( u*u );
00065     ocp.subjectTo( f );
00066 
00067     ocp.subjectTo( AT_START, s ==  0.0 );
00068     ocp.subjectTo( AT_START, v ==  0.0 );
00069     ocp.subjectTo( AT_START, m ==  1.0 );
00070     ocp.subjectTo( AT_END  , s == 10.0 );
00071     ocp.subjectTo( AT_END  , v ==  0.0 );
00072 
00073     ocp.subjectTo( -0.01 <= v <= 1.3 );
00074 
00075 
00076     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
00077     // ---------------------------------------------------
00078     OptimizationAlgorithm algorithm(ocp);
00079 
00080     // Additionally, flush a plotting object
00081     GnuplotWindow window( PLOT_AT_END );
00082         window.addSubplot( s,"DifferentialState s" );
00083         window.addSubplot( v,"DifferentialState v" );
00084         window.addSubplot( m,"DifferentialState m" );
00085         window.addSubplot( u,"Control u" );
00086 
00087     // Additionally, flush a logging object
00088     LogRecord logRecord( LOG_AT_EACH_ITERATION );
00089     logRecord << LOG_KKT_TOLERANCE;
00090 
00091     algorithm << logRecord;
00092     algorithm << window;
00093 
00094     algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN );
00095     algorithm.set( MAX_NUM_ITERATIONS, 20 );
00096     algorithm.set( KKT_TOLERANCE, 1e-10 );
00097 
00098     algorithm.solve();
00099 
00100     // Get the logging object back and print it
00101     algorithm.getLogRecord( logRecord );
00102     logRecord.print( );
00103 
00104 
00105     return 0;
00106 }
00107 /* <<< end tutorial code <<< */
00108 
00109 //  algorithm.set( DISCRETIZATION_TYPE, MULTIPLE_SHOOTING );
00110 //  algorithm.set( DISCRETIZATION_TYPE, SINGLE_SHOOTING   );
00111 //
00112 //  algorithm.set( DYNAMIC_SENSITIVITY,  FORWARD_SENSITIVITY );
00113 //  algorithm.set( DYNAMIC_SENSITIVITY, BACKWARD_SENSITIVITY );
00114 
00115 //  algorithm.set( INTEGRATOR_TYPE, INT_RK45 );
00116 //  algorithm.set( INTEGRATOR_TYPE, INT_RK78 );
00117 //  algorithm.set( INTEGRATOR_TYPE, INT_BDF );
00118 //
00119 //  algorithm.set( KKT_TOLERANCE, 1e-4 );
00120 //  algorithm.set( MAX_NUM_ITERATIONS, 20 );


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:59:55