michaelis_menten.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00038 #include <acado_optimal_control.hpp>
00039 #include <acado_gnuplot.hpp>
00040 
00041 
00042 int main( ){
00043 
00044     USING_NAMESPACE_ACADO
00045 
00046     // INTRODUCE THE VARIABLES:
00047     // -------------------------
00048     Parameter               V ;
00049     Parameter               km;
00050 
00051 
00052     // READ THE MEASUREMENT FROM A DATA FILE:
00053     // --------------------------------------
00054     DMatrix m; m.read( "michaelis_menten_data.txt" );
00055 
00056 
00057     // DEFINE A MEASUREMENT FUNCTION:
00058     // ------------------------------
00059     Function h;  // the measurement function
00060 
00061     int i;
00062     for( i = 0; i < (int) m.getNumRows(); i++ )
00063         h << V*m(i,0)/(km + m(i,0)) - m(i,1);
00064 
00065 
00066     // DEFINE A PARAMETER ESTIMATION PROBLEM:
00067     // --------------------------------------
00068     NLP nlp;
00069     nlp.minimizeLSQ( h );
00070 
00071     nlp.subjectTo( 0.0 <= V  <= 2.0 );
00072     nlp.subjectTo( 0.0 <= km <= 2.0 );
00073 
00074 
00075     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE ESTIMATION PROBLEM:
00076     // ------------------------------------------------------------------
00077     ParameterEstimationAlgorithm algorithm(nlp);
00078     algorithm.solve();
00079 
00080 
00081     VariablesGrid parameters;
00082     algorithm.getParameters( parameters );
00083 
00084         return 0;
00085         
00086     // GET THE VARIANCE COVARIANCE IN THE SOLUTION:
00087     // ---------------------------------------------
00088     DMatrix var;
00089     algorithm.getParameterVarianceCovariance( var );
00090 
00091     double LSSE = 2.0*algorithm.getObjectiveValue();
00092     double MSE  = LSSE/( m.getNumRows() - 2.0 );   // m.getNumRows() == number of measurements
00093                                                    // 2              == number of parameters
00094 
00095     var *=  MSE;  // rescale the variance-covariance with the MSE factor.
00096 
00097 
00098     // PRINT THE RESULT ON THE TERMINAL:
00099     // -----------------------------------------------------------------------
00100         printf("\n\nResults for the parameters: \n");
00101         printf("-----------------------------------------------\n");
00102         printf("   V   =  %.3e  +/-  %.3e \n", parameters(0,0), sqrt( var(0,0) ) );
00103         printf("   km  =  %.3e  +/-  %.3e \n", parameters(0,1), sqrt( var(1,1) ) );
00104         printf("-----------------------------------------------\n\n\n");
00105 
00106     return 0;
00107 }
00108 
00109 
00110 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:59:20