00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00038 #include <acado_optimal_control.hpp> 00039 #include <acado_gnuplot.hpp> 00040 00041 00042 int main( ){ 00043 00044 USING_NAMESPACE_ACADO 00045 00046 // INTRODUCE THE VARIABLES: 00047 // ------------------------- 00048 Parameter V ; 00049 Parameter km; 00050 00051 00052 // READ THE MEASUREMENT FROM A DATA FILE: 00053 // -------------------------------------- 00054 DMatrix m; m.read( "michaelis_menten_data.txt" ); 00055 00056 00057 // DEFINE A MEASUREMENT FUNCTION: 00058 // ------------------------------ 00059 Function h; // the measurement function 00060 00061 int i; 00062 for( i = 0; i < (int) m.getNumRows(); i++ ) 00063 h << V*m(i,0)/(km + m(i,0)) - m(i,1); 00064 00065 00066 // DEFINE A PARAMETER ESTIMATION PROBLEM: 00067 // -------------------------------------- 00068 NLP nlp; 00069 nlp.minimizeLSQ( h ); 00070 00071 nlp.subjectTo( 0.0 <= V <= 2.0 ); 00072 nlp.subjectTo( 0.0 <= km <= 2.0 ); 00073 00074 00075 // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE ESTIMATION PROBLEM: 00076 // ------------------------------------------------------------------ 00077 ParameterEstimationAlgorithm algorithm(nlp); 00078 algorithm.solve(); 00079 00080 00081 VariablesGrid parameters; 00082 algorithm.getParameters( parameters ); 00083 00084 return 0; 00085 00086 // GET THE VARIANCE COVARIANCE IN THE SOLUTION: 00087 // --------------------------------------------- 00088 DMatrix var; 00089 algorithm.getParameterVarianceCovariance( var ); 00090 00091 double LSSE = 2.0*algorithm.getObjectiveValue(); 00092 double MSE = LSSE/( m.getNumRows() - 2.0 ); // m.getNumRows() == number of measurements 00093 // 2 == number of parameters 00094 00095 var *= MSE; // rescale the variance-covariance with the MSE factor. 00096 00097 00098 // PRINT THE RESULT ON THE TERMINAL: 00099 // ----------------------------------------------------------------------- 00100 printf("\n\nResults for the parameters: \n"); 00101 printf("-----------------------------------------------\n"); 00102 printf(" V = %.3e +/- %.3e \n", parameters(0,0), sqrt( var(0,0) ) ); 00103 printf(" km = %.3e +/- %.3e \n", parameters(0,1), sqrt( var(1,1) ) ); 00104 printf("-----------------------------------------------\n\n\n"); 00105 00106 return 0; 00107 } 00108 00109 00110