00001 /* 00002 * This file is part of ACADO Toolkit. 00003 * 00004 * ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization. 00005 * Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau, 00006 * Milan Vukov, Rien Quirynen, KU Leuven. 00007 * Developed within the Optimization in Engineering Center (OPTEC) 00008 * under supervision of Moritz Diehl. All rights reserved. 00009 * 00010 * ACADO Toolkit is free software; you can redistribute it and/or 00011 * modify it under the terms of the GNU Lesser General Public 00012 * License as published by the Free Software Foundation; either 00013 * version 3 of the License, or (at your option) any later version. 00014 * 00015 * ACADO Toolkit is distributed in the hope that it will be useful, 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 00018 * Lesser General Public License for more details. 00019 * 00020 * You should have received a copy of the GNU Lesser General Public 00021 * License along with ACADO Toolkit; if not, write to the Free Software 00022 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA 00023 * 00024 */ 00025 00026 00027 00035 #include <acado/validated_integrator/ellipsoidal_integrator.hpp> 00036 00037 00038 USING_NAMESPACE_ACADO 00039 00040 typedef TaylorVariable<Interval> T; 00041 00042 /* >>> start tutorial code >>> */ 00043 int main( ){ 00044 00045 // DEFINE VARIABLES: 00046 // ---------------------- 00047 DifferentialState x,y; 00048 Parameter p; 00049 DifferentialEquation f; 00050 00051 f << dot(x) == p*x*(1.0-y); 00052 f << dot(y) == p*y*(x-1.0); 00053 00054 TaylorModel<Interval> Mod( 1, 4 ); 00055 00056 Tmatrix<T> x_init(2); 00057 x_init(0) = 1.2; 00058 x_init(1) = 1.1; 00059 00060 Tmatrix<T> p_init(1); 00061 p_init(0) = T( &Mod, 0, Interval(2.95,3.05)); 00062 00063 EllipsoidalIntegrator integrator( f, 5 ); 00064 00065 integrator.set(INTEGRATOR_PRINTLEVEL , MEDIUM ); 00066 integrator.set(PRINT_INTEGRATOR_PROFILE, YES ); 00067 integrator.set(INTEGRATOR_TOLERANCE , 1e-6 ); 00068 integrator.set(ABSOLUTE_TOLERANCE , 1e-6 ); 00069 00070 integrator.integrate( 0.0, 8.0, &x_init, &p_init ); 00071 // integrator.step( 0.0, 1.0, &x_init, &p_init ); 00072 00073 00074 00075 return 0; 00076 } 00077 /* <<< end tutorial code <<< */ 00078 00079