getting_started.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00034 #include <acado_optimal_control.hpp>
00035 #include <acado_gnuplot.hpp>
00036 
00037 
00038 int main( ){
00039 
00040     USING_NAMESPACE_ACADO
00041 
00042 
00043     // INTRODUCE THE VARIABLES:
00044     // -------------------------
00045 
00046     DifferentialState         x;
00047     Control                   u;
00048     Disturbance               w;
00049     Parameter               p,q;
00050     DifferentialEquation      f;
00051 
00052     const double t_start = 0.0;
00053     const double t_end   = 1.0;
00054 
00055 
00056     // DEFINE A DIFFERENTIAL EQUATION:
00057     // -------------------------------
00058 
00059     f << -dot(x) -x*x + p + u*u + w;
00060 
00061 
00062     // DEFINE AN OPTIMAL CONTROL PROBLEM:
00063     // ----------------------------------
00064     OCP ocp( t_start, t_end, 20 );
00065 
00066     ocp.minimizeMayerTerm( x + p*p + q*q );
00067     ocp.subjectTo( f );
00068     ocp.subjectTo( AT_START, x == 1.0 );
00069     ocp.subjectTo(  0.1 <= u <= 2.0 );
00070     ocp.subjectTo( -0.1 <= w <= 2.1 );
00071 
00072 
00073     // DEFINE AN OPTIMIZATION ALGORITHM AND SOLVE THE OCP:
00074     // ---------------------------------------------------
00075     OptimizationAlgorithm algorithm(ocp);
00076 
00077 //    algorithm.set( HESSIAN_APPROXIMATION, EXACT_HESSIAN );
00078     algorithm.solve();
00079 
00080 
00081     return 0;
00082 }
00083 
00084 
00085 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:58:24