pendulum.cpp
Go to the documentation of this file.
00001 /*
00002  *    This file is part of ACADO Toolkit.
00003  *
00004  *    ACADO Toolkit -- A Toolkit for Automatic Control and Dynamic Optimization.
00005  *    Copyright (C) 2008-2014 by Boris Houska, Hans Joachim Ferreau,
00006  *    Milan Vukov, Rien Quirynen, KU Leuven.
00007  *    Developed within the Optimization in Engineering Center (OPTEC)
00008  *    under supervision of Moritz Diehl. All rights reserved.
00009  *
00010  *    ACADO Toolkit is free software; you can redistribute it and/or
00011  *    modify it under the terms of the GNU Lesser General Public
00012  *    License as published by the Free Software Foundation; either
00013  *    version 3 of the License, or (at your option) any later version.
00014  *
00015  *    ACADO Toolkit is distributed in the hope that it will be useful,
00016  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
00017  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00018  *    Lesser General Public License for more details.
00019  *
00020  *    You should have received a copy of the GNU Lesser General Public
00021  *    License along with ACADO Toolkit; if not, write to the Free Software
00022  *    Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
00023  *
00024  */
00025 
00026 
00027 
00035 #include <acado_integrators.hpp>
00036 
00037 
00038 
00039 int main( ){
00040 
00041     USING_NAMESPACE_ACADO
00042 
00043 
00044     // Define a Right-Hand-Side:
00045     // -------------------------
00046     DifferentialState      phi;    // the angle phi
00047     DifferentialState     dphi;    // the first derivative of phi w.r.t time
00048     Control                  F;    // a force acting on the pendulum
00049     Parameter                l;    // the length of the pendulum
00050 
00051     const double m     = 1.0  ;    // the mass of the pendulum
00052     const double g     = 9.81 ;    // the gravitational constant
00053     const double alpha = 2.0  ;    // frictional constant
00054 
00055     IntermediateState    z;
00056     DifferentialEquation f;
00057 
00058     z = sin(phi);
00059 
00060     f << dot(phi ) == dphi;
00061     f << dot(dphi) == -(m*g/l)*z - alpha*dphi + F/(m*l);
00062 
00063 
00064     // DEFINE AN INTEGRATOR:
00065     // ---------------------
00066 
00067     IntegratorRK45 integrator( f );
00068 
00069         integrator.set( INTEGRATOR_PRINTLEVEL, HIGH );
00070         integrator.set( INTEGRATOR_TOLERANCE, 1.0e-6 );
00071 
00072     // DEFINE INITIAL VALUES:
00073     // ----------------------
00074 
00075     double x_start[2] = { 1.0, 0.0 };
00076     double u      [1] = { 0.0      };
00077     double p      [1] = { 1.0      };
00078 
00079     double t_start    =  0.0        ;
00080     double t_end      =  2.0        ;
00081 
00082 
00083     // START THE INTEGRATION:
00084     // ----------------------
00085 
00086         //integrator.freezeAll();
00087         integrator.integrate( t_start, t_end, x_start, 0, p, u );
00088 
00089 
00090     // GET THE RESULTS
00091     // ---------------
00092 
00093         VariablesGrid differentialStates;
00094         integrator.getX( differentialStates );
00095         
00096         differentialStates.print( "x" );
00097 
00098 
00099     return 0;
00100 }
00101 
00102 
00103 


acado
Author(s): Milan Vukov, Rien Quirynen
autogenerated on Thu Aug 27 2015 11:59:46